

my of prose is proportional to his familiarity with the material, a suspicion confirmed by an occasional imprecision in the wordier sections. For example, in the general discussion of molecular vibrations on page 282 I found "fundamental transitions may be of two different types: infrared (ir) and Raman," although the example discussed later on page 287 does contain an inactive mode. This and other minor infelicities in Di Bartolo's book will not disturb a mature reader, but they will detract from the book's luster as a textbook.

A text should fill in the gaps between a student's cryptic lecture notes and equations, providing details, explanations and concepts missed in the rush of note taking. Di Bartolo's book does not do this and leaves such niceties to the reader's imagination, inventiveness or experience. Anyway, the volume probably would be double its present size if it did. A textbook is rarely selected, though, because students will like it, but usually because the professor likes it. And professors should be delighted with Di Bartolo's book—it is a treasure of ready-to-wear lecture material and provides for many hours of expansive comment.

* * *

Robert Summitt is an associate professor of metallurgy, mechanics and materials science at Michigan State University.

Detailed experimental technique

PROGRESS IN NUCLEAR TECH-NIQUES AND INSTRUMENTATION, VOL. 3. F. J. M. Farley, ed. 255 pp. North-Holland, Amsterdam (Interscience, New York), 1968. \$13.50

by ROBERT R. BORCHERS

Volume 3 of the series Progress in Nuclear Techniques and Instrumentation appears to fulfill a definite need in present day research. The need is caused by the hesitancy of many authors to include technical details about experimental technique in their journal publications. Many of the important things that make experiments possible are never described outside the internal and progress reports that are not cataloged or generally available. Semiconductor detectors are a good example.

I am very often approached by students and asked for a good reference on the present state of semiconductordetector technology. Until the present volume appeared, I generally referred them to literature published by various manufacturers.

George Ewans's article on the subject of semiconductor detectors is complete and is very timely, now that the technology seems to have stabilized after the introduction of lithium-drifted germanium detectors. I have already found it very useful on several occasions, not as a reference for fabricating detectors but rather for information on obtainable performance. A somewhat more specialized article, dealing mainly with Ge(Li) gammaray detectors, by A. J. Tavendale appeared in volume 17 of Annual Reviews of Nuclear Science.

The other two articles in this volume by B. W. Montague on rf particle separation at high energies and by T. Alvager and J. Uhler on electromagnetic isotope separators are both well done. They are long enough to con-

See This and Other Imaginative New Books at Saunders Booth 433

Offering an - up - to - date and authoritative perspective of the solid state field . . .

Blakemore: SOLID STATE PHYSICS

This excellent new book presents a profusely illustrated discussion of the solid state field. It is designed to serve as the text for a one-semester course in the physics of solids. Topics were selected and arranged so the book can profitably be used by college seniors with a modest background in modern physics. Yet the author keeps it attractive to the beginning graduate student who has some familiarity with quantum-mechanics.

Primary emphasis is placed on the periodic structure of a crystalline solid and on its consequent constraints on the motion of phonons and electrons. Topics less directly connected with this theme (including superconductivity and dielectric and magnetic phenomena) are treated at a survey level.

The basic elements of crystal structure and symmetry operations are demonstrated in real and reciprocal space and applied to the frequency/wave-vector relationships for phonons. The scattering of phonons is considered in detail. The discussion of electron states in solids begins with free electron theory and progresses to a review of typical complexities for constant-energy surfaces in metallic and semiconducting solids. Influences controlling electron dynamics are discussed in terms of their various manifestations in electric and magnetic fields.

More than 100 problems are offered and keyed to appropriate points in the exposition.

391 pages, 230 illustrations \$13.50. Published May, 1969. By John S. Blakemore, Florida Atlantic University.

W.B. SAUNDERS COMPANY

West Washington Sq., Phila. Pa. 19105
Please send on 30-day approval and bill me
BLAKEMORE: SOLID STATE PHYSICS

Name______(write address below) PT 1.70

SELECTED ELSEVIER BOOKS IN PHYSICS.....

PLASMA WAVES IN SPACE AND LABORATORY, Vol. 1

J. O. Thomas and B. J. Landmark, Editors. Contains the invited papers of acknowledged specialists presented at the NATO Advanced Study Institute on Plasma Waves in Space and Laboratory, Norway, 1968. This first volume of a two-volume work presents current advances and a review of literature both in experimental techniques and observation, and in their theoretical interpretation.

1969 \$23.50

VACUUM TECHNOLOGY An Introduction

L. G. Carpenter. Presents an introduction to the principles of vacuum technology and a broad view of the entire field.

May in prep.

QUANTUM MECHANICS An Introduction

J. G. Taylor. An introductory text which uses the most modern ideas and attitudes to classical and quantum mechanics, and explains the properties of atoms and molecules.

March \$7.75

A GUIDE TO SUPERCONDUCTIVITY

David Fishlock, Editor. An introductory book on superconductivity—the condition of having no electrical resistance—and its applications. Eight experts in the field have contributed papers on its various aspects.

Jan. \$7.00

THE CONFLICT BETWEEN ATOMISM AND CONSERVATION THEORY 1644-1860

Wilson L. Scott. This contribution to the history of science explores the conflict: Is force (later called energy) conserved or lost when one hard body strikes another? The question took the form of a running debate between a multitude of scientists, both major and minor, between 1644 and 1860. History of Science Library.

Feb. \$16.00

ROYAL INSTITUTION LIBRARY OF SCIENCE Physical Sciences (10-Volume Set plus Index Volume)

Sir William Lawrence Bragg and George Porter, Editors. This series of 10 volumes will contain exact reproductions of Discourses on Chemistry and Physics delivered by famous men at the Royal Institution of Great Britain between the years 1851 and 1939. These have been grouped together under the heading of "Physical Sciences" since it is difficult to draw a sharp line of demarcation between Chemistry and Physics, especially in the earlier Discourses where such a distinction was hardly recognized. There are many discourses by Faraday and Tyndall. J. J. Thomson gives an account of his new 'corpuscles' (electrons). Bequerel and Curie describe the discovery of radioactivity. C.T.R. Wilson describes his Cloud Chamber, Soddy talks about isotopes, Barkla about X-rays, Zeeman about magneto-optics, and Jeans explains the significance of the new mechanics.

Feb. 10 Vol. Set: \$165.00

FIELD ION MICROSCOPY

Erwin W. Müller and Tien Tzou Tsong. An authoritative description of the principles and applications of field ion microscopy. It reveals the atomic structure of metal surfaces and is applicable to surface physics and chemistry, metallurgy and materials science.

1969 \$19.00

ELECTRICAL PROBES IN PLASMA DIAGNOSTICS

John Douglas Swift and Michael J. R. Schwar. Provides research workers in the field of partially ionized gases with a comprehensive background for the successful measurement of such plasma parameters as charge carrier concentration and temperature.

March \$17.00

DAYLIGHT AND ITS SPECTRUM

S. T. Henderson. Follows the progress of the study of daylight, selecting representative contributions from the great amount of published work. Discusses the practical applications of this data.

Feb. \$15.75

AN INTRODUCTION TO METEOROLOGICAL OPTICS

R.A.R. Tricker. An introductory undergraduate text in atmospheric optics, it provides an understanding of the processes, largely mathematical, which enter into the theory.

June \$11.00

THEORIES OF LIGHT From Descartes to Newton

A. I. Sabra. A major study of the methodology of Descartes, Newton, and their contemporaries, in theory and practice. History of Science Library. Feb. \$12.75

PRACTICAL OPTICAL CRYSTALLOGRAPHY Second Edition

N. H. Hartshorne and A. Stuart. This second edition updates the first, improves the clarity of the treatment where necessary, and includes four chapters of new material.

Jan. \$11.50

ROTATIONAL STRUCTURE OF THE SPECTRA OF DIATOMIC MOLECULES

I. Kovacs. A collection of material on the fundamental investigations and theory on rotational spectra with the addition of much new material (through 1966). This is especially true with respect to the formulas of intensity distribution. Feb. \$16.75

SPACE ENVIRONMENT

N. H. Langton, Editor. This is the first in a series of five textbooks on astronautics. It deals with the history of astronautics, the problem of space environment, and man in space. Space Research and Technology, Volume 1. Jan. \$7.00

PRINCIPLES OF PULSE CODE MODULATION

K. W. Cattermole. Presents a clear exposition of the principles and properties of this important technique which is rapidly gaining in importance in the telecommunications field.

Mar. \$17.50

回

shil-

形刻

julus

肿

EDET

Wine

bi

REE

100

dati

脑

ing a

100-1

量

0.003

the st

15, 21

歌曲

MATRIX ANALYSIS OF DISCONTINUOUS CONTROL SYSTEMS

P. V. Bromberg. Contains the first application of the relatively new state-variable theory for the complete treatment of special classes of control systems.

1969 \$18.75

SEMICONDUCTOR PLASMA INSTABILITIES

Hans Hartnagel. Presents for the first time a complete treatment of the phenomena known as semiconductor bulk-effects. It covers both fundamental phenomena and the complete range of present-day applications.

1969 \$11.00

THIN-FILM OPTICAL FILTERS

H. A. Macleod. Presents an introduction to thin-film optical filters. A supplement to available works, it covers design, manufacture, performance, and application. 1969 \$22.00

Write for Spring 1970 Physics Catalogue – Now Available Visit our Booth – No. 317 – at the 18th Annual Physics Show

AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 Vanderbilt Avenue, New York, N. Y. 10017 - Telephone (212) MU 6-5277

tain a fair amount of detail and to give a picture of what can be accomplished.

It is interesting that there is probably relatively little overlap in the audiences for these three articles. This fact was true of the former volumes that are about evenly split between topics of interest in nuclear physics and those primarily for high-energy experiments. Nevertheless the series represents a worthwhile contribution to the technical literature.

Robert R. Borchers is presently doing research in gamma-ray perturbed angular correlation and digital data-handling techniques at the University of Wisconsin, Madison.

Bell's quanta

tion of m

of fire

ISTONE.

space for

ION the prod

S CONTR

ient of sp

lete trat

ulk-effect

iplete 12

THE PHYSICS OF LARGE DEFORMATION OF CRYSTALLINE SOLIDS, VOL. 14. By James F. Bell. 253 pp. Springer-Verlag, New York, 1968. \$12.00

by DANIEL C. MATTIS

This monograph suggests an amusing and potentially unique intersection of solid-state physics and mechanical engineering. Over a span of 20 years of research, James F. Bell, professor at Johns Hopkins' solid mechanics department, has performed thousands of experiments on dozens of varied crystalline solids ranging from rock salt to aluminum. The tests, some static and some involving the motion of largeamplitude waves in the material, had durations as short as 10-6 sec at strain rates of 105 sec-1 and as long as 106 sec at strain rates of 10-8 sec.-1 They were conducted at temperatures as low as 4.2 K and as high as 1800 K, that is from $T/T_{\rm m} =$ 0.003 to 0.98, where $T_{\rm m}$ is the melting temperature of the material. From these experiments, which are the substance of this monograph, Bell derives the phenomenological law

$$\sigma = \left(\frac{2}{3}\right)^{r/2} \mu(0) B_0 \left(1 - \frac{T}{T_{\rm m}}\right) (\epsilon - \epsilon_{\rm b})^{1/2}$$

where σ is the uniaxial stress and ϵ the uniaxial strain. They are referred to an initial unstressed value ϵ_b . B_0 is a constant, $\mu(0)$ is isotropic modulus, and $r=1,2,3,\ldots$ is a positive integer that increases by steps of unity or more, with increasing stress. Typical

experimental results are shown in the figure. Not content with quantizing r, Bell has also found that $\mu(0)$ is quantized

$$\mu(0) = \left(\frac{2}{3}\right)^{s/2+p/4} \times 2.89$$

 $\times 10^4 \text{kg/mm}^2$

This is a universal relation for crystalline materials, in which s = 1,2,3,... is also an arbitrary positive integer and p = 0,1 is a structure factor that is constant for a given material.

Does the fraction 2/3 arise from an average, say of $\cos^2\theta$, over various orientations of microcrystalline structures? Do the "quantum numbers" r, s and p relate to the number of such microstructures? Answers based on a microscopic model are presently not available, and there are no guesses ventured in this book. The technological importance of understanding large-scale deformation of matter is obvious, and so the challenge of this book to physicists is loud and clear.

The reviewer is professor of solid-state physics at the Belfer Graduate School of Science of Yeshiva University, and has most recently coauthored an article "Magnetic Semiconductors," in the Handbuch der Physik.

Compound semiconductors

MONOGRAPHS IN SEMICONDUCTOR PHYSICS, VOL. 2: LIQUID SEMICONDUCTORS. (Trans. from Russian) By V. M. Glazov, S. N. Chizhevskaya, N. N. Glagoleva. 362 pp. Plenum, New York, 1969. \$22.50

by STUART A. RICE

Although the translation from the Russian is undoubtedly correct, the title of this book is misleading. To me the interesting problems in liquid semiconductors are primarily concerned with the electronic structure, the scattering processes that occur in liquids and the relation between the optical spectra of liquids and solids.

This book, on the other hand, describes thermodynamic and gross physical properties of semiconductors. It is, in fact, an extended review of the authors' work and of similar work by other investigators. The dc conductivities, the thermoelectric powers, the magnetic susceptibilities and oc-

SUPERCONDUCTING

SUPERCONDUCTING MAGNETS

SUPERCONDUCTING Magnet Systems

For Technical Information or Employment, Call or Write:

MAGNETIC CORPORATION of AMERICA

67 ROGERS STREET CAMBRIDGE, MA. 02142 (617) 868-3300

An Equal Opportunity Employer