the simple harmonic oscillator, coupled oscillations, waves on strings, transmission lines, electromagnetic waves and Maxwell's equations and diffraction. Two added chapters deal with Fourier methods and nonlinear oscillations. The typical chapter has 15 problems at the end, and Pain correctly describes the complete book as a compact text, as much for working as for reading.

Both the choice of topics and their treatment are commendable. The author manages to cover an immense amount of material with a neatness, economy and style that pleasantly reflect the natural properties of the waves he describes. The mixture of mathematical and physical discussion is judicious, and an occasional vivid remark entertains, as well as instructs, the reader. For example, he men-

tions that the roar of a large football crowd is just about enough to heat a cup of coffee. Such a remark has also the merit of conveying subliminally to the aspiring scientist the valuable philosophical message that the utilitarian value of hot air is remarkably small.

In addition to the standard material, Pain brings in many interesting topics, including Schrödinger's equation, the tunnel effect, Brownian motion and shock waves, but not lasers. Overall the book is recommended as a most useful addition to the field.

\* \* \*

The reviewer is an associate professor at American University and has been active in the field of waves and vibrations for a generation. He is currently on a sabbatical leave as visiting scholar at the University of California, Berkeley, division of applied mechanics.

#### Ready-to-wear lectures

OPTICAL INTERACTIONS IN SOL-IDS. By Baldassare Di Bartolo. 541 pp. Wiley, New York, 1968. \$19.95

#### by ROBERT SUMMITT

Physicists interested in the optical properties of solids have long suffered the absence of an adequate text, therefore having to make do with superficial monographs, marginally useful conference proceedings and those single-topic reviews that never say quite enough. (It is amazing how thoroughly and how often the cubic lattice is explained.) A forbiddingly mat wide range of relevant topics has probably been the most important factor in dissuading potential authors, although in recent years we have had such works as Max Garbuny's simpler and unpretentious Optical Physics and, physici of course, J. C. Slater's serial.

Now we have the effort of Baldassare Di Bartolo, a senior scientist of
MITHRAS Division of Sanders Associates, who has worked extensively in
electronics, microwave engineering
and more recently in laser physics.
Di Bartolo modestly states that the
present work represents "the different
subjects . . . that at one time or another have been part of my experience."
His experience is impressive.

Di Bartolo says he did not mean to write a text on quantum mechanics or group theory, assuming that the reader has had one-year preparation in the former and none in group theory. The first 11 chapters, nevertheless, present a well detailed and simultaneous development of both subjects and give special attention to the properties of magnetic ions in crystalline environments; the author's objective is to provide a theoretical foundation for lasers and absorption-fluorescence spectroscopy. Using these tools, the last eight chapters treat molecular vibrations, lattice vibrations, various modes of interaction (ion-photon, ion-phonon, and phonon-electron), fluorescence phenomena and laser theory.

I do not think anyone will say the treatment is either superficial or that it is restricted to simple problems. Nor should it be said that Di Bartolo has lost sight of the purpose for a textbook treatment of many related topics, namely presentation in a consistent terminology together with cross referencing of results. In summary, the author's coverage is consistent, coherent and excellent, and the book should serve nicely in a graduate course on the optical properties of solids. It is not quite encyclopedic, however, because not discussed are the classical treatment of lattice-mode polarization waves, specimen boundary-condition effects and scattering theory.

His presentation has a lecture quality, containing many short, one-sentence paragraphs, occasionally even approaching one-equation paragraphs. One suspects that Di Bartolo's econo-

### XHXHXHXHXHX

## PION-NUCLEON SCATTERING

Robert J. Cence

One of the most fundamental problems in elementary particle physics is the study of the interaction of the pi-meson with nucleons. It is believed that the pi-meson plays a fundamental role in the description of nuclear forces and it is important, therefore, to understand the interaction of these particles. The primary method of gaining information on this interaction is through scattering experiments, and this book is concerned primarily with studies of pion-nucleon scattering at high energies. It is a summary of the work of the last ten years in this field.

Investigations in Physics Series, 11 \$6.50

# GENERALIZED FEYNMAN AMPLITUDES

By Eugene R. Speer

This book contains a valuable discussion of renormalization through the addition of counterterms to the Lagrangian, giving the first complete proof of the cancellation of all divergences in an arbitrary interaction. The author also introduces a new method of renormalizing an arbitrary Feynman amplitude, a method that is simpler than previous approaches and can be used to study the renormalized perturbation series in quantum field theory.

Annals of Mathematics Studies, 62 \$3.50

Princeton University Press

Princeton, New Jersey 08540

ZHZHZHZHZHZHZHZ

# serving the students of the seventies

ON DISPLAY AT THE JANUARY MEETINGS

#### PHYSICS FOR POETS

**Robert H. March**, University of Wisconsin. 250 pages / \$8.00 (tentative). *Available February*, 1970 | Keeping to the broad sweep of the subject matter and curtailing many of the intermediary topics, this book links two crucial periods in physical thought, the classical mechanics of Newton and the Einstein-Bohr-Schrödinger revolution of the twentieth century. The book is for use in a one-semester course for non-specialists.

#### THE PRINCIPLES OF PHYSICS AND CHEMISTRY

**J. Bruce Brackenridge** and **Robert M. Rosenberg**, both of Lawrence University. 704 pages. *Now available* | This is the only text for a course in physics and chemistry for the science major at the calculus level. The authors' assumption is that the student is better able to see the subjects in proper perspective when they are taught together.

誠

(i) uni

ple disc

le they

tres as

NOL

與

Cher Ted

神

Pitest d

food by

the to in

public public

bood

a and

#### SOLID STATE THEORY

Walter A. Harrison, Stanford University. 512 pages. Now available | This text is designed for a comprehensive first course in solid state physics at the graduate level. The fundamental concepts, approaches, and approximations which have been successful in solid state physics are developed and illustrated by application to problems of current interest. Extensive problem sets are included.

#### INTRODUCTION TO THE PHYSICS OF SPACE

**Bruno Rossi** and **Stanislaw Olbert**, both of the Massachusetts Institute of Technology. International Series in Pure and Applied Physics. 450 pages. *Now available* | This graduate-level text and reference book describes and analyzes the physical phenomena occurring in space and gives special attention to those that involve charged particles (ions, electrons, and cosmic rays). There are problems at the end of most chapters.

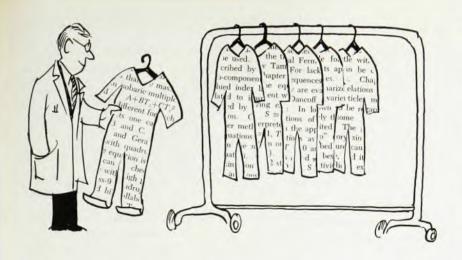
#### QUANTUM THEORY OF MAGNETISM

**Robert M. White,** Stanford University. 256 pages / \$14.50 (tentative). Available March, 1970 | This graduate-level work contains a modern treatment of the theory of magnetism within the framework of generalized susceptibility. The treatment of the subject from a linear response point of view is a unique feature establishing a unifying theme.

#### **ELEMENTARY PHYSICS: Atoms, Waves, Particles**

**G. A. Williams**, University of Utah. 350 pages / \$9.50. Now available | Designed for a brief course in physics for non-majors, this text covers the essentials of classical physics and twentieth-century atomic and nuclear physics.

#### INTRODUCTION TO PHYSICS FOR SCIENTISTS AND ENGINEERS


Frederick Bueche, University of Dayton. 928 pages / \$12.95. Now available | This introductory text is intended for the calculus-level university physics course. Although the text is moderately rigorous and sophisticated, care is taken at every step to make the results physically reasonable and intuitive.

#### INTRODUCTION TO MODERN PHYSICS, Sixth Edition

**F. K. Richtmyer; E. H. Kennard;** and **John N. Cooper,** U.S. Naval Postgraduate School. International Series in Pure and Applied Physics. 752 pages / \$14.95. *Now available* | This text maintains the classic, historical features of the earlier editions while up-dating the material on solid state physics and nuclear physics. Each topic is approached in an elementary manner, and considerable historical background is provided.

## mcgraw-hill book company

330 West 42nd Street, New York, New York 10036



my of prose is proportional to his familiarity with the material, a suspicion confirmed by an occasional imprecision in the wordier sections. For example, in the general discussion of molecular vibrations on page 282 I found "fundamental transitions may be of two different types: infrared (ir) and Raman," although the example discussed later on page 287 does contain an inactive mode. This and other minor infelicities in Di Bartolo's book will not disturb a mature reader, but they will detract from the book's luster as a textbook.

A text should fill in the gaps between a student's cryptic lecture notes and equations, providing details, explanations and concepts missed in the rush of note taking. Di Bartolo's book does not do this and leaves such niceties to the reader's imagination, inventiveness or experience. Anyway, the volume probably would be double its present size if it did. A textbook is rarely selected, though, because students will like it, but usually because the professor likes it. And professors should be delighted with Di Bartolo's book—it is a treasure of ready-to-wear lecture material and provides for many hours of expansive comment.

\* \* \*

Robert Summitt is an associate professor of metallurgy, mechanics and materials science at Michigan State University.

#### Detailed experimental technique

PROGRESS IN NUCLEAR TECH-NIQUES AND INSTRUMENTATION, VOL. 3. F. J. M. Farley, ed. 255 pp. North-Holland, Amsterdam (Interscience, New York), 1968. \$13.50

#### by ROBERT R. BORCHERS

Volume 3 of the series Progress in Nuclear Techniques and Instrumentation appears to fulfill a definite need in present day research. The need is caused by the hesitancy of many authors to include technical details about experimental technique in their journal publications. Many of the important things that make experiments possible are never described outside the internal and progress reports that are not cataloged or generally available. Semiconductor detectors are a good example.

I am very often approached by students and asked for a good reference on the present state of semiconductordetector technology. Until the present volume appeared, I generally referred them to literature published by various manufacturers.

George Ewans's article on the subject of semiconductor detectors is complete and is very timely, now that the technology seems to have stabilized after the introduction of lithium-drifted germanium detectors. I have already found it very useful on several occasions, not as a reference for fabricating detectors but rather for information on obtainable performance. A somewhat more specialized article, dealing mainly with Ge(Li) gammaray detectors, by A. J. Tavendale appeared in volume 17 of Annual Reviews of Nuclear Science.

The other two articles in this volume by B. W. Montague on rf particle separation at high energies and by T. Alvager and J. Uhler on electromagnetic isotope separators are both well done. They are long enough to con-



#### See This and Other Imaginative New Books at Saunders Booth 433

Offering an - up - to - date and authoritative perspective of the solid state field . . .

#### Blakemore: SOLID STATE PHYSICS

This excellent new book presents a profusely illustrated discussion of the solid state field. It is designed to serve as the text for a one-semester course in the physics of solids. Topics were selected and arranged so the book can profitably be used by college seniors with a modest background in modern physics. Yet the author keeps it attractive to the beginning graduate student who has some familiarity with quantum-mechanics.

Primary emphasis is placed on the periodic structure of a crystalline solid and on its consequent constraints on the motion of phonons and electrons. Topics less directly connected with this theme (including superconductivity and dielectric and magnetic phenomena) are treated at a survey level.

The basic elements of crystal structure and symmetry operations are demonstrated in real and reciprocal space and applied to the frequency/wave-vector relationships for phonons. The scattering of phonons is considered in detail. The discussion of electron states in solids begins with free electron theory and progresses to a review of typical complexities for constant-energy surfaces in metallic and semiconducting solids. Influences controlling electron dynamics are discussed in terms of their various manifestations in electric and magnetic fields.

More than 100 problems are offered and keyed to appropriate points in the exposition.

391 pages, 230 illustrations \$13.50. Published May, 1969. By John S. Blakemore, Florida Atlantic University.

#### W.B. SAUNDERS COMPANY

West Washington Sq., Phila. Pa. 19105
Please send on 30-day approval and bill me
BLAKEMORE: SOLID STATE PHYSICS

Name\_\_\_\_\_\_(write address below) PT 1.70