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ELEMENTARY PARTICLES
Two complementary approaches to strong-interaction theory,
the multiperipheral bootstrap and the dual-resonance models, appear
to be the most promising ways ahead. The idea that emerges is
that particles hitherto thought to be "elementary" might instead be
composite, all made up of bound states of each other.

GABRIELE VENEZIANO

THE THEORY OF STRONG INTERACTIONS

has been for many years particularly
hard and fruitless. Today, under the
momentum of a number of new ideas,
theorists in this field appear to have re-
gained confidence and enthusiasm.
Both in its mathematical tools and
physical ideas, the new trend in strong
interactions points to a decisive change
from the old one. Is elementary-par-
ticle theory undergoing a revolution-
ary change too?

The merging of quantum mechanics
and special relativity has been for

many years, and still is today, one of
the big challenges to the theoretical
physicist. If successful, such a pro-
gram would result in a much closer
understanding of the properties of
what are considered today the ultimate
components of matter, and are there-
fore called "elementary particles."
The quantum-mechanical effect should
enter into the probabilistic interpreta-
tion of the state of the system under
observation while relativity would al-
low us to take correctly into account
the fast relative motion of these en-

tities together with the possibility
that, at any moment, particles can be
created and annihilated from energy
and into energy. Thus any relativistic
quantum theory is necessarily a many-
body problem. This conclusion is
not compulsory in the nonrelativistic
case (the so-called "potential-scatter-
ing'* problem) where the number of
particles is strictly conserved.

Strong and weak interactions

For still unexplained reasons the fun-
damental interactions among elemen-
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tary particles fall into a few categories
according to their strength. In order
of increasing strength (or coupling
constant) we find gravitational, weak,
electromagnetic and, finally, strong
interactions. The last in this list,
strong interactions, are responsible for
most of the properties of nuclei and of
the elementary particles, and here we
shall mainly restrict ourselves to
them. For a wider outlook on ele-
mentary-particle theory see Abraham
Pais's PHYSICS TODAY article.1

A good treatment of strong interac-
tions appears to be the necessary first
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step towards a complete understand-
ing of elementary particles. The
other, weaker types of interactions, we
hope, can be taken into account in a
second stage to give corrections.

Unfortunately the theory of strong
interactions is the most difficult to deal
with, because of the impossibility of
escaping many-body complications.
In fact in cases where the strength of
the interaction is "small," like electro-
dynamics and weak interactions, one
gets around that difficulty by means of
perturbation theory. Creating more
particles means going to a higher order
in the coupling constant g and, if (in
the appropriate units) g is much less
than one, we can consider these effects
negligible corrections to the lowest-
order calculation, or alternatively we
will be able to evaluate approximately
the most important part of them.

The existence of a meaningful per-
turbation approach together with the
knowledge of the basic interaction ex-"
plains the well known success of quan-
tum electrodynamics (where g2 ~
1/137).

Weak-interaction theory (for ex-
ample, beta decay) has not gone as
far, mainly because of our ignorance
of the exact form of the interaction.
On the other hand the possibility of
neglecting higher orders (here g2 zz
10"13) has allowed us to determine
quite a number of details about such
interactions. One result has been to
connect some weak interactions to the
electromagnetic ones through a rota-

tion in the space of isobaric spin and,
more recently, the so-called "current
algebra" has been able to make the
connection much closer.

Symmetries and invariance

Because of their strength, nothing
of that sort can be used in strong in-
teractions (here g2 ~ 1-10). The
only results that can be drawn inde-
pendently of the perturbation expan-
sion in g are those coming from the
invariance of the theory with respect
to some transformations (so-called
"symmetries"). An example is rela-
tivistic and translational invariance,
which leads to conservation of linear
momentum, energy and angular mo-
mentum. Another very fruitful appli-
cation of this method, which uses
mainly group theory, is the invariance
of strong interactions under isobaric-
spin rotations that transform, for in-
stance, the proton into the neutron or
the positively charged pion into the
neutral one. The scheme was further
extended to include the so-called
"strange particles" (K mesons, A and
2 baryons, for example) in the sue-
cessful scheme of a broken SU(3)
symmetry of strong interactions.

These methods, however, can not
say much about the detailed dynamics
of strong interactions. Because the
possibility of a perturbative field-
theoretical approach to strong inter-
actions appears to be hopeless, for the
reasons I have given, several theorists
have tried to overcome the difficulty
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by other methods. They impose
directly the fundamental properties
that the scattering probability ampli-
tude (here called the S matrix) should
have for a reasonable quantum-rela-
tivistic theory and then require some
further particular properties that char-
acterize die differences that strong in-
teractions should show when com-
pared with the other interactions.

A new approach

This approach to the study of elemen-
tary particles (S-matrix theory) was
first proposed by Werner Heisenberg.2

The guiding idea underlying it is that
one should deal only with quantities
that, as well as describing our micro-
scopic system, are also directly measur-
able. Scattering probability ampli-
tudes are such quantities. More re-
cendy this line was reconsidered and
emphasized by several theorists and
in particular by Geoffrey F. Chew in
the so called "bootstrap" program.3

We will find it useful to review
briefly the fundamental general as-
sumptions of the present S-matrix
theory:

• Unitarity is the statement of con-
servation of probability. As prob-
ability is the square modulus of the
amplitude unitarity turns out to be a
nonlinear condition.

• Analyticity is the mathematical
expression for causality. It is mainly
used in the form of dispersion rela-
tions, which hold in the classical theory
of light dispersion as a consequence of
a precise time relation between cause
and effect.

• Crossing is a purely relativistic
property that connects two different
processes obtained, one from the other,
by interchange of one initial and one
final particle of the process. Figure
1 indicates two processes connected
through crossing.

Before going into the details of the
most recent developments, we have to
introduce the concept of "resonance"
and that of "Regge pole."

Resonance

The first concept, resonance, is a clas-
sical one. Looking again at the classi-
cal theory of dispersion we know that,
when a resonating mode is excited
around some frequency ojr, the com-
plex amplitude behaves near wr as

A(w) = const. —— (1)
co r — co — 21

T is a measure of the friction (absorp-

s = (p;l + p,,)- > 0

CROSSING. The reactions a + b - > c - f d ( i n part a of the figure) and a + c -» b
+ d (in part b) are related by crossing. They are described by the same scattering
amplitude A(s,t) in different regions of the s,t plane. —FIG. 1

tion), and 1/T is then proportional to
the lifetime of the oscillation. From
equation 1 we see that r is also the
width of the resonance. Equation 1
is an analytic expression for A that
obeys a dispersion relation

1 r ImA(w')
irj co — co — le

const,
1 1 1 1 " \ w / / / \o I p i

(co — cor)
2 + r2

r = 0 corresponds to a stable reso-
nance with an infinite lifetime; we
shall call it a "narrow" resonance. It
corresponds to a pole of A(w) on the
real axis at o = a>r. In this limit

1

CO T — CO — l€
- = P

o r — co)

The same phenomenon occurs in
strong-interaction physics where,
around some energy Er of the system
of incident particles, a state can be ex-
cited and then decays with a lifetime
1/T. Here the inverse relation of the
width and the lifetime is a conse-
quence of the uncertainty principle.
A resonance has a definite and quan-
tized value of total angular momen-
tum, its spin, which is given by the
orbital angular momentum ft l0 of the
incident particles if they are spinless.
In other words, a resonance of spin l0

is a pole in the partial-wave amplitude

Alo(E) const.
1

ET - E - iT

when E ^ ET

Regge poles

Tullio Regge had the idea of investi-
gating Aj(E) as a function A(l,E) in
the complex / plane. His studies in

potential scattering (Schrodinger
equations) revealed the existence of
poles in the I plane (Regge poles) at
a position Zpole = a(E)y which was
moving with the energy (the Regge
trajectory) to give

l, E)
P(E)

I - a(E)

where / v\ a(E) (2)
/3(E) is the residue at the pole (the
Regge residue function). For I at an
integer Zo and Rea(E r ) = l0 we find
from equation 2

Ai0 (E) b̂ t const.
1

/o - a(E)
(3)

const. X

1

/o - [lo + a'(E- ET) + i Ima(£r)]

const.
a'(Er - E - zT)

(valid for E^Eri with a1 = dRea(Er)/
dE and r = lma(Er)/a

f)

We see then that the pole in I
(the Regge pole) and the pole in E
are manifestations of the same entity:
a resonance. However, the Regge
approach provided new links among
resonances of different spin, by ex-
plaining them as manifestations of a
single Regge trajectory passing
through successive position integral
values (the Regge recurrences). The
other very interesting feature of
Regge poles is that they control the
behavior of scattering amplitudes at
high energy (Regge behavior). To
see this better let us introduce the
variables s and t as shown in Figure
1. They are related to the incident
energy E and the scattering angle 0
by simple algebraic relations. Then,
roughly speaking, a Regge pole at
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I — a(s) means that

A(s, l)Al(s)Pl(cos0t)

« P« (5)(cosO w (cos0,)a(5) ^ ^ ( 5 )

(when cos 05 —• oo and a(j) is fixed).
Here 0s is the scattering angle in the
center of mass of the s channel (figure
la ) . This limit of fixed s and very
large cos 9s~t is not physical in non-
relativistic potential scattering (|cos
0»|<1). It can, however, be used in-
stead in the relativistic situation where,
through crossing, t is identified as the
squared energy and s ^ cos 6S

 as the
cosine of the scattering angle of
the process obtained from the original
one by crossing (see figure 1). We
see that Regge poles in the s channel
(that is, in the complex plane of the
angular momentum in the process
shown in figure la) give the reso-
nances that dominate low-energy scat-
tering, whereas Regge poles in the t
channel control the high-s behavior.

Duality

What is the connection between these
two properties of Regge poles? We
can see today, with hindsight, that it
was mainly the lack of an answer to
this question that prevented a fast
development of strong-interaction
theory in the 1960's. The solution of
this problem came in a quite indirect
way: Sergio Fubini and his collabora-
tors, starting from studies of Murray
Gell-Mann's current algebra (that is,
of nonstrong interactions) discovered
the so-called "superconvergence rela-
tions" for strong processes. Several
groups extended these equations to
more general cases, and after that it
was relatively easy for Richard Dolen,
David Horn and Christopher Schmid4

in 1967 to see what solution of the
above problem was suggested by these
equations. Their proposal, known to-
day as Dolen-Horn-Schmid duality,
was that the high-* behavior predicted
from Regge poles in the t channel and
the low-energy resonances also pre-
dicted by Regge poles (but in the s
channel) were two self-complete de-
scriptions of the same phenomenon.
If one extrapolates the high-energy
prediction to lower energies, the result
is an average description of the reso-
nating phenomena occurring there.

Consequently one should not add
together the two contributions at all
energies (double counting). The idea
of duality summarized above has been
crucial in the latest developments of

strong interactions. It has played the
role of the dynamical assumption char-
acterizing strong interactions in the
two dynamical approaches that seem
most promising today in this field:
the "multiperipheral bootstrap" and
the "dual-resonance models."

Multiperipheral bootstrap

The multiperipheral bootstrap has its
origin in the application of Regge
theory to particle production, namely,
processes in which the two initial par-
ticles produce a large number of final
particles. In this case we believe that
the amplitude is described, for high
values of the fixed subenergies, by ex-
changes of Regge poles in the channels
indicated in figure 2. Because a prop-
erty of a Regge pole is that its con-
tribution decreases rapidly with in-
crease of the momentum transfer tif

we conclude that, at high subenergies,
the amplitude is large only in the so-
called "multiperipheral" kinematically
allowed region. This is the region
where all the t{ are small. At this
point one uses unitarity in the usual
way. Defining S = 1 + iT we have
for the T matrix (from S+S = 1)

-i(T+ - T) = T+T (4)

Equation 4 is an operator equation,
and its expectation value is taken be-
tween the initial and final states. In-
serting as usual a complete set of
states in the right-hand side of equa-
tion 4 one gets

<final|/(r -

= £ (final|r+|inter)

(inter \T\initial) (5)

If the incident energy is large, a

great variety of intermediate states
contributes to the sum in equation 5,
and, because the number of particles
is not conserved in the relativistic
theory, the difficulty of many-body
states pointed out earlier is again
showing up. Before the proposal of
the multiperipheral bootstrap it was
generally supposed that we could ne-
glect many-particle production and
restrict ourselves to the contribution of
the intermediate states of lowest mass,
but the results were not quite satis-
factory. Having now a model (the
multi-Regge model) to calculate the
production of many-particle states, we
can overcome this difficulty in the
multiperipheral bootstrap. Duality
plays a crucial role in that it allows us
to replace the multi-Regge expression
even when some of the subenergies in
the intermediate state are not very
large. Therefore we can be sure that,
on the average, we shall not introduce
a large error. We then see that, in
this new approach, Regge theory with
duality replaces the role of dominance
of low-mass states in equation 5 as the
special assumption to make for strong
interactions. In fact the result of the J
calculations indicates that such domi-
nance was not justified.

Equation 5 will act as a self-con-
sistency equation, because we shall
use as input a multi-Regge formula
with a definite form of trajectory func-
tion a(t) and residue function /?(*),
and we demand that the output be
again a Regge formula with the same
functions a(t) and P(t). This kind
of self-consistency method is what has
been called "bootstrap". It looks as if
only now, through an extensive use of
dual Regge poles, it may lead to a suc-
cessful theory of strong interactions.

a R,

R,

S - (Pa + P,,)- > 0

Rn ,
b

t, =(Pa-P,,)":

t, = (P, ~ P.-, - P . , ) 2

•

t,,_, = (P.. " P- n)J

c.

c,,.,

* *PRODUCTION PROCESS a + b -> Ci + c2 -H . . • Cn-i + cn and its kinematics
the total incident squared energy in the center of mass. s,,,n are final squared subene
gies, ti squared momentum transfers and Ri Regge particles. ~~™
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The results obtained first by Chew
and A. Pignotti5 along these lines were
quite encouraging, although their deri-
vation was not formally very neat.
Later Chew, Marvin Goldberger and
Francis E. Low gave6 a more elegant
formulation of the multiperipheral
bootstrap in the form of an integral
equation expressing the self-consis-
tency condition between input and
output Regge parameters in a conven-
ient mathematical form.

Comparison of characteristics

Summarizing the ideas that underlie
the multiperipheral-bootstrap approach
to strong interaction we could say that
it is characterized by

• applying Regge theory in its ex-
tended form to production processes,
together with the multiperipheral na-
ture of high-energy scattering (domi-
nance of small values of the momen-
tum transfers)

• using Dolen-Horn-Schmid duality
to extend meaningfully "the multi-
Regge formula to low subenergies,
where presumably resonance produc-
tion dominates over Regge exchange

•imposing unitarity as the funda-
mental dynamical condition.

It is worth noticing that, because of
the bounds imposed by unitarity on
the scattering amplitudes, one of the
predictions of the multiperipheral ap-
proach is the relative smallness of the
resonance widths. This fact turns out
to be important for the dual-resonance
models that we shall discuss now.

Dual-resonance models are charac-
terized by

• a complete description of scatter-
ing processes (including production)
in terms of narrow resonances only.
These resonances should be infinite in
number and unbounded in their an-
gular momentum. They will then be
classified in the Regge language by
infinitely rising trajectories / = a(s)
—> oo as s —> oo

•use of the Dolen-Horn-Schmid
duality in order to use the resonance
model in the high-energy region,
where Regge exchange is supposed to
be a better description than resonance
formation

•imposing analyticity and crossing
as fundamental dynamical conditions.

We see immediately by comparison
of the three characteristics of the two
approaches that they are somehow
complementary to each other. Con-
cerning the second characteristic of
each method, Dolen-Horn-Schmid
duality is used in the two extreme
ways in representing the amplitudes
by Regge poles only or by resonances
only. The first characteristic of each
method is also complementary. We
have said that the multiperipheral
bootstrap explains the narrowness of
die resonances, which appears in the
first characteristic of dual-resonance
models. Conversely a consequence of
dual-resonance models is the justifi-
cation of the multiperipheral assump-
tion for production processes, which
appears in the first multiperipheral-
bootstrap characteristic. Even Regge
asymptotic behavior comes out natu-
rally from the dual-resonance model.

Finally, in the third characteristic of
each method, the general principles of
a quantum relativistic theory are
shared between the multiperipheral
bootstrap and the dual-resonance
model, with the first taking the more
difficult part (because of the nonlinear
nature of unitarity).

Results of dual resonance

Instead of going into the technical de-
tails of the dual-resonance model, I
will just mention the main results of
these models. As anticipated, one
needs an infinite number of linear and
parallel Regge trajectories; these tra-
jectories will produce, for physical
values of the angular momentum, a
great variety of resonances (see figure
3). Nevertheless it is surprising that,
with a scattering amplitude consisting
only of simple poles, we can fix the
constraints of crossing symmetry,
Regge behavior and duality.

Not only does a solution exist; it is
very simple. For a scattering of two
identical spinless particles the scatter-
ing amplitude is given by7

A(s,t) = B(-a8, -at)

(i _ (6)

DOUBLE-RESONANCE MODEL prediction for the spectrum of the lowest-mass non-
strange mesons. The parallel black and colored lines, separated by units of \ J — 1/2,
correspond to particles of opposite polarity. —FIG. 3

where as — a + bs and at — a + bt
are the Regge trajectories in the s and
t channels respectively. B is the Euler
beta-function. It is well known that
B(x,y) is symmetric in x and y (cross-
ing) and that it has simple poles at
the negative integral values of x and
y (analyticity). Moreover, the
asymptotic limit (.\* -» oo and y fixed)
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is xv (Regge behavior) and we can
write

B(x,y) = £ 1

+ m
Cm(v)

= £
oy +

(7)

where Cm(t) is a polynomial of degree
m in f. Equation 7 states that the
amplitude can be expressed either as
a sum of the poles in the s variable or
of those in the t variable (Dolen-
Horn-Schmid duality) and that sum-
ming together both of them gives
twice A (double counting of the inter-
ference model). Apparently equation
6 satisfies all the requirements we
wanted to impose except unitarity.
This violation is necessary for zero-
width resonances because the scatter-
ing amplitude becomes arbitrarily
large near a pole and thus gives even-
tually a probability greater than one.

Unitarity

Attempts to find unitarity corrections
to equation 6 have been, and are be-
ing, tried by several groups. I will
mention only the work of C. Love-
lace8 which shows that, with a proper
introduction of finite resonance widths,
dual-resonance models are in very
good agreement with many experi-
mental data and are therefore more
than pure mathematical models. An-
other good feature of equation 6 is
that, in spite of having poles in s and
f, it never gives a "double" pole of the
form

1 1
s — so t — to

This form is in fact forbidden. Math-
ematically the reason is that s poles
appear in equation 6 from x ~ 0 and
poles in t from x ~ 1, and they are
therefore mutually incompatible.

This fact can be generalized to the
case of production processes9 where,
say, two initial particles produce N
final particles (where N is greater than
two). This success has led to a gen-
eralization of equation 6 to an arbi-
trary process, and it is amusing that
the formulas one obtains satisfy the
requirements that were used in the
multiperipheral bootstrap (multi-Regge
behavior, multiperipheralism).

Probabilistic interpretation

The mathematics underlying these
formulas is both new and elegant. It
consists of a set of nonlinear equations
that relate the variables xt appearing

in the generalization of the integral of
equation 6 as raised to the power
__ai _ i, (For a production process
we have many energy variables like s
and t). The equations appear to con-
nect different simple and composite
probabilities Pf through a normaliza-
tion condition 2 P{ — 1. The system of
equations turns out to have a solution
precisely of the type needed and with
the right number of free parameters.
I should underline at this point that
this probabilistic interpretation is still
far from clear.

It looks, however, as if statistical
elements come out in other contexts of
these models as well. More precisely,
one can ask whether the energy levels
of these dual-resonance models are
degenerate or not. It is possible to in-
vestigate this problem (which is neces-
sary also for the unitarization of the
dual-resonance models), and the sur-
prising result10 is that the number of
degenerate states present in the nth
energy level increases essentially as
the number of partitions P(n) of n in
nonnegative integers, which for large
n is proportional to exp (const. • n1/2).
As the energy (or mass) of the nth level
is also proportional to n1/2 (this comes
from a(s) — a + bs) we have in con-
clusion that the number of levels of
mass m is increasing as exp (m/m0)
where m0 is connected to the slope of
the trajectory b and must be, in the
dual-resonance model, a universal con-
stant.

Composite "elementary" particles

The physical explanation of this fact
can have far reaching implications.
There is good theoretical evidence that
it is related to the so-called "elemen-
tary" particles being themselves com-
posite, with the number of their con-
stituents being very large. What are
the constituents? The answer that
might emerge, and which is consistent
with the so-called "bootstrap" philoso-
phy, is that the constituents are the
"elementary" particles themselves. In
other words, it could be that we have
an infinite variety of particles that
interact with each other in a small re-
gion of space (about 10"13 cm) in such
a way as to form bound (or resonating)
states that possess again the properties
of their constituents.

This picture is not unphysical for
the world of very high energies (and
very small distances) where the rela-
tivistic regime of motion is responsible
for the creation and annihilation of
particles and where the counting of

the constituents might lose a precise
meaning. In this case the methods of
statistical mechanics could be the most
appropriate to describe these systems
with so many degrees of freedom.

The analogy with statistical me-
chanics is made even more striking if
one compares the dual-resonance
model with the results obtained by R,
Hagedorn11 in his studies of hadronic
collisions at very high energies. He
used a thermodynamic relativistic
model, and found, as a consequence of
a thermodynamic "bootstrap" condi-
tion, that the mass spectrum of
hadrons has to increase as exp (m/kT0)
(k — Boltzmann's constant) where To

is a universal temperature (To ~ 160
MeV = 1.3 X 1012 K) determined
from experiments at very high energy.

It is perhaps too early to claim that
the analogy is more than a formal one.
Nevertheless, it does appear that the
physical assumption of a self-consistent
description of elementary particles as
bound states of themselves, which is
common to the two approaches, has
led, through different methods of in-
vestigation, to very similar results.
Furthermore, it has naturally intro-
duced into the game a new universal
constant (the slope of Regge trajec-
tories in one case, maximal tempera-
ture of hadronic matter in the other)
that could play an important role in
future developments of our theories of
elementary particles.
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