functions, it seems to me, adds little information. Also definitions of some terms seem elusive and are dependent upon the practical examples for clarification. These are minor criticisms of a very carefully organized book.

Although this book was not written for physicists, it might help a physicist in suggesting economies in the planning of an experiment and in extracting maximal information from the experimental results. To graduate students interested in seeing a relation between their mathematics courses and engineering science, Bartee's book offers a wealth of authentic exemplary analysis.

Robert L. Weber is with the Osmond Laboratory at Pennsylvania State University.

Operation and application

SCANNING ELECTRON MICROS-COPY: APPLICATIONS TO MA-TERIALS AND DEVICE SCIENCE. By P. R. Thornton. 368 pp. Chapman and Hall, London (Barnes & Noble, New York), 1968. \$12.75

by L. MARTON

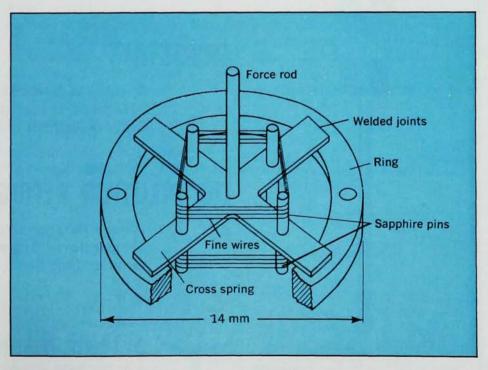
The first impression I had of this book was very favorable, for the table of contents indicates an excellent plan on which to build. It starts with the physics background necessary for the building and operation of a scanning microscope with plenty of space devoted to the interaction between the electron beam and the specimen. The later chapters are devoted to the operation of the instrument and to its applications.

Unfortunately that very good impression was spoiled in reading the book. The first part, relating to the physics of the instrument and its general principles, is marred by what may have been a very hasty attempt to get the book out before somebody else came out with a similar book. On almost every page one finds evidence for such undue haste: poor proofreading and a lot of errors that can not be attributed to proofreading alone. The author himself qualifies part of his treatment as "oversimplified." Many of his statements are subject to serious questioning, for in a book aimed essentially at the user of the instrument, the derivation of the scattering equations appears to me superfluous. Giving the equations with numerical constants, but without any indication of the units used, is a serious oversight.

The second part of the book, where the author is discussing the operation and application of the instrument, is considerably better. Thus the book could perform a useful service, in spite of all its defects, for the practical operator of scanning electron microscopes.

L. Marton is an electron physicist with the National Bureau of Standards.

Elongation measurement


STRAIN GAUGES: KINDS AND USES: By Hermann K. P. Neubert. 164 pp. Macmillan, London (St. Martin's, New York) 1967. \$7.00

by RICHARD B. ZIPIN

Many measurements of physical quantities depend on the measurement of a mechanical displacement. Strain or elongation gauges of various types are used to sense those displacements and are therefore of great interest to experimentalists. This little book provides a comprehensive introduction to this field and should satisfy both the students and experimentalists who are not familiar with electrical-resistance methods of measuring strain.

The book deals mainly with the two types of resistance strain gauges: wire (and foil) and semiconductor. The whole field of elongation measurement is covered without going very deep into any subject other than resistance gauges. The first chapter is a survey of the various methods of measuring strain, as well as a brief discussion of mechanical, optical, pneumatic, acoustic and electric strain gauges. Next are chapters on wire-resistance and on semiconductor strain gauges. The fourth chapter treats the evaluation of strain measurements and the final one is on strain gauges as the measuring elements of transducers for force, pressure and acceleration. The book is completed by an appendix on SI units and conversion tables, a short bibliography and an index. At the front of the book is a table that defines the nomenclature throughout the book, a very useful device that many authors overlook.

The author is very careful in defining the units of practically every equation used. This practice is often helpful but does become tiresome as one progresses through the book. Quite complete tables of characteristics of commercial wire-resistance and semiconductor strain gauges taken from manufacturers' literature are included and are welcome in this book, but sorely lacking are any references

FORCE-SENSING ELEMENT with unbonded strain gauges actuated by cross spring in contre flexure. (From Strain Gauges: Kinds and Uses by H. K. P. Neubert.)