after the other in the same nucleus) and spallation (evaporation processes from highly excited nuclei formed in high-energy collisions). The rest of the book contents (nuclear matter according to L. C. Gomes, John D. Walecka and Victor Weisskopf, general scattering theory, models of finite nuclei, compound-nucleus formation, the statistical model and direct reactions) may be found in Preston. Preston's book strikes me as more detailed (it is. after all, twice as long); one may compare figures 18.8 in Preston and 4.9 in Kikuchi and Kawai to confirm this impression.

Why doesn't someone start a loose-leaf *Physics of the Nucleus* (in several volumes perhaps)? If someone felt that he could add to the thing, he could suggest revisions here and there and maybe add a few pages. Every few years the thing would have to be edited anew. No doubt the *Encyclopedia of Physics* works something like that. But I am not thinking democratically—let 1000 *Physics of the Nucleus* bloom! Here you have another blossom—you judge whether or not it is prettier than the rest.

The reviewer is a theoretical nuclear physicist at Los Alamos Scientific Laboratory.

Relativity insights

ASSUMPTION AND MYTH IN PHYSICAL THEORY. By H. Bondi. 88 pp. Cambridge Univ. Press, Cambridge, Mass., 1967. \$2.95

by LAWRENCE SKLAR

This slim volume contains the four Tarner Lectures, delivered at Cambridge University in 1965, by the noted astrophysicist of the University of London, Hermann Bondi.

The first lecture, "The Limits of Theory Making," is a chatty, rather diffuse essay in philosophy. Here we learn that Bondi admires Karl Popper but, unless I misread Popper, Bondi somewhat misunderstands his Bondi believes that disviews proved theories can remain useful, and he doubts the usefulness of allencompassing "unified field" theories (but sees, at least, something plausible suggested by Eddington's later work). Bondi further believes that theories have accreted unfortunate "myths" to themselves that distort both our understanding of the theory and its influence on later science.

The second talk, "Relativity: Its Myths and Pre-suppositions," begins with a series of deep and insightful remarks on the nature of relativity in the special theory and the relation and indebtedness of this concept to the relativity of Galileo and Newton. Bondi points out the respects in which the Einsteinean theory is a return to, rather than a departure from. Newtonian theory. The essay continues with an elegant exposition of the fundamentals of the special theory by means of the k calculus. The lecture concludes with as lucid a brief treatment of the clock paradox, rightly styled by the author as the "so-called clock paradox," as I have seen in print. The treatment is a persuasive argument for the heuristic powers of the k calculus.

Lecture 3, "Gravitation," gives us a breathless, nonmathematical introduction to general relativity, but without the expository novelty of lecture 2. As if this were not enough to encompass in 15 pages, the section concludes with an attempted popular exposition of the recent work of Ezra T. Newman and Roger Penrose on gravitational waves. The author is dismayed that gravitational waves fail to have their energy concentrated on a thin shell of a wave front and even more disturbed that, according to this work, the present observed gravitational field of an object is a function of its past history as well as its present (or recent) state. What is worse, the influence of the remote past appears not to fade away, even asymptotically, in the remote future. One awaits a more detailed exposition of these curious results in a form suitable for nonspecialists.

Lecture 4, "The Origin of Inertia and the Universe," advances into the status of Mach's Principle in general relativistic theories. The author is perceptive and subtle, but, as in the third essay, the limitations of the lecture format make his treatment far too cursory. I suspect that most of what he says will be fully intelligible only to the already well initiated. Again our appetities for more are whetted by mention of the Hoyle-Narliker attempt to formulate an action-at-a-distance version of general relativity.

In summary, this "ceremonial" lecture series is hardly the ideal format for presenting subtle ideas of physics

BONDI

and cosmology to a lay audience. Bondi does as well as one could possibly expect in these circumstances. One lecture is a model of popular science exposition. Two others, while too hasty and brief really to do the job they set for themselves, inform the sophisticated reader and at least tempt the layman to look further. Only the introductory lecture is, quite pardonably, too chatty to really serve any function at all, at least when it is removed from the intimacy of the lecture hall onto the cold printed page.

The reviewer, an associate professor of philosophy at the University of Michigan, specializes in the philosophy of physics.

Low-pressure techniques

VACUUM SYSTEM DESIGN. By N. T. M. Dennis, T. A. Heppell. 223 pp. Chapman & Hall, London (Barnes & Noble, New York), 1968. \$8.00

by J. H. SINGLETON

The uses of vacuum in industrial applications and in the laboratory are exceedingly diverse and require a wide variety of techniques. The intent of this book, as described on the jacket and in the preface, is to provide a guide to available vacuum equipment and to the design and operation of vacuum systems in the entire range, cov-