accepted, however, is very different from saying that it is so complete that no problems remain. But, as we tried to show, the volume of supporting evidence from many different sources is so great that it now appears to the majority of scientists more reasonable to attribute any apparent conflict of other observations to our inadequate understanding of the phenomena to which they relate, rather than to question the drift hypothesis as a whole. We feel, however, that most of the points raised by Cook have been adequately dealt with in the published literature.

To consider the specific points raised: Faunal evidence may, with great caution, be used to test the feasibility of any particular reconstruction of the continents. Some of the reconstructions proposed in the past have been incorrect, and palaeontological evidence has helped demonstrate this in particular cases. We do not see how faunal evidence can be used to construct a general case against drift.

As stated in our article, we feel that the evidence in favor of the destruction of crust in oceanic trenches is very strong¹; our solution to the case Cook mentions is shown in our figure 7. That severely deformed sedimentary trench fillings are not found is surprising only until it is realized that sediment that has been severely deformed no longer contains planar reflecting horizons and becomes seismically opaque. The strongly deformed sediment probably forms the opaque material on the trench wall against the island arc.

We agree that divergence of polarwandering paths for different continents is an important indication of drift, and we discuss the relationship between the geographic and magnetic poles. Cook is wrong to suppose that the reef-distribution argument depends on assumptions of the constancy of width of climatic belts. It depends only on the assumption that climatic belts have retained throughout geological time a generally symmetrical distribution about the geographic pole. The coral-reef test, however, was an important test in another way; if repositioning the reefs at the latitudes indicated by palaeomagnetic evidence had, for example, located them all at the north pole we should have strong reason to doubt the method. In fact,

the distributions of all kinds of latitudedependent deposits make good sense when restored to their palaeomagnetic latitudes.²

As for Cook's point in his penultimate paragraph, the drift hypothesis does not preclude the possibility of certain continental areas having similar climates today to those that they had in Permian times. To retain Cook's metaphor, we believe that the jury came back several years ago.

References

- E. Irving, Palaeomagnetism, John Wiley, New York (1964).
- B. Isacks, J. Oliver, L. R. Sykes, J. Geophys. Res 73, 5855 (1968).

DONALD L. TURCOTTE Cornell University E. RONALD OXBURGH University of Oxford

What happened to my journal?

In his article "What Happened to My Paper?" (PHYSICS TODAY, May, page 23) Samuel A. Goudsmit gives us valuable insight into the difficult job of preparing papers for publication in *The Physical Review*. But what happens to the printed issues? The latest I have seen is dated three months ago. Why the long delay (which can almost double the time from author to reader)? What happens to my journal, Dr Goudsmit?

ROBERT C. JOHNSON University of Toronto

A REPLY FOR AIP: Goudsmit has asked me to respond. For The Physical Review, as for some 17 other journals, the American Institute of Physics takes over responsibility for copy editing and production once the articles have been accepted by the scientific editor's office. The handling of more than 60 000 pages per year, which amounts to around 25% of the world's journal literature in physics, is a major undertaking, and we are sometimes beset with difficulties that lower our performance to the level characteristic of many other of the scientific societies.

The Editorial Section at AIP, which took up a few lines in Goudsmit's article, numbers approximately 60 people, about one third of them working on *The Physical Review*. We have been hit hard by staff losses, and recruitment of competent people to be trained as copy editors has been

Measurements in scientific and educational laboratories involving impedance magnitude, $\mathbf{Z},$ and phase angle, $\Theta,$ no longer require tedious test procedures. These measurements are now as easy to make as voltage readings. No nulling . . . no balancing . . . no calculations to make. The wizardry of these HP instruments provides direct readout in terms of \mathbf{Z} (in ohms) and Θ (in degrees) over a continuous frequency range.

HP 4800A Vector Impedance Meter covers the 5 Hz to 500 kHz range. You set the frequency, select the impedance range and read: Z from 1 ohm to 10 Megohms, and Θ from -90° to $+90^{\circ}$. \$1650.

HP 4815A RF Vector Impedance Meter covers 500 kHz to 108 MHz. Measures, via a probe, active or passive circuits directly in their normal operating environment. z from 1 ohm to 100 K ohms; θ from 0° to 360°. \$2650.

Application Note 86 describes many applications of the 4800A and the 4815A Vector Impedance Meters including the measurement of Z, R, L, and C. For your copy and complete specifications, contact your local Hewlett-Packard field engineer or write: Hewlett-Packard, Green Pond Road, Rockaway, New Jersey 07866. In Europe: 1217 Meyrin-Geneva, Switzerland.

10907

difficult. This has caused major slowdowns in publishing several of the journals, especially The Physical Review, where in early June we were short eight people despite strenuous recruitment efforts. A new increase in salary levels on 1 June has helped significantly, and on 1 July we were back to normal staff levels; but new people have to be trained, and this takes time and effort from the more senior people so that improvement in schedules will be somewhat delayed. Our printers have had overload problems, too, with some very large issues such as the 784page issue of The Physical Review for 25 Jan. A recent prolonged strike at one of our printers put extra loads on some of the other printers as well as on our editorial staff. As of 1 July we expect to publish eight issues of The Physical Review in July instead of the normal five. This will bring the time lag down from a peak of almost three months to around seven weeks but will still leave us a lot of catching up to do.

Hugh C. Wolfe Director of Publications American Institute of Physics

Unreasonable hotel rooms

William W. Havens Jr's justification for the rejection of the Cleveland convention center as a possible meeting site (PHYSICS TODAY, May, page 9) is as interesting for what was omitted as what was said. While it is true that at a convention-center meeting, "No member would have the convenience of having the meeting in the same building where he is lodged," this is true for a large number of members at hotel meetings. prices for rooms in the hotels in which the meetings are held are usually so high that those of us without unlimited expense accounts are forced to seek accomodations elsewhere. Undoubtedly, the cost of "complimentary space" made available to the society is reflected in the price of the hotel rooms. Hence, any realistic comparison of the relative costs of a Chicago or a Cleveland meeting should include the costs of individual hotel rooms. I for one would be more than willing to pay a higher registration fee if I could obtain a hotel room at more reasonable cost.

ROBERT J. YAES
The University of Texas□

THE TROPEL MODEL 603 OPTICAL MOUNT

The Model 603 incorporates a new design approach in mirror or optics orientation, utilizing three spherical spindles seated in "V" grooves. The advantages in such a design are numerous:

- **■** Exceptional stability
- Large degree of kinematic adjustment in tilt and "Z" motion
- Vibrations will not disturb micrometer settings

The efficient, compact design of the 603 lends itself for use with intracavity etalons, compact Fabry-Perot's, etc. With flat base attached, the center line of the 603 is 2.50" above the horizontal. The overall height is 4.375". The unit will accept 2", $1\frac{1}{2}$ " and 1" diameter mirrors. The Model 603 is available from stock and guaranteed for 1 year against defects in material and workmanship.

FEATURES:

- X-Y Tilt: 9°
- Z Motion: .437"
- lacktriangle Angular Resolution \geq 2 arc-sec.
- Pin or Base Mounting
- Compact, Precision Packaging
- 3 Micrometer—Kinematic Design

PRICES:

Model 603A With base, pin, and 2 adapters	\$132.00
Model 603 base	8.50
Model 603 pin (13 mm dia.)	2.00
Model 603 adapter	
1" or 11/2"each	6.50
Model 603 B	115.00

Prices FOB Fairport, N. Y. Subject to change without notice.

For further information contact

Designers and Manufacturers of Precision Optical Systems and Instruments 52 West Ave., Fairport, N.Y. 14450 Phone: (716) 377-3200