funds to support the publication, you may request support from [... name of journal or journal-supporting organization]. If your request is approved, it is understood that an appropriate acknowledgement will be included within the published paper."

In AIP and APS journals formal acknowledgement of publication support would supplement, but not alter, the recently announced new policies.

It is my opinion that the simple expedient of formal acknowledgement of publication support can accomplish several things. On the one hand authors with federal project grants capable of supporting costs of publication and departments with institutional grants for such things would prefer to use these funds for that purpose rather than formally admit in the published paper that they "pleaded poverty." (At present only one's editor knows for sure.) On the other hand the author and department that really can not pay the publication costs would be delighted, I believe, formally to acknowledge support of publication costs.

Perhaps if a substantial fraction of our scientific journals were to require inclusion of formal acknowledgement of publication support in those papers subsidized by the journals, an additional source of publication funds might develop. There is an attractive possibility, for example, that private foundations, industries and even federal agencies that do not have funds or inclination to support the massive costs of academic research might be willing or even eager to support publication of finished pieces of work that interest them.

I believe that support of publication costs (and acknowledgement of that support) could and should be viewed as independent of the support of the research itself. Were it to become more generally viewed in this way, additional funds and sources of funds might develop to strengthen generally the publication of science in the US.

> KENNETH E. COLLINS Williamsville, N. Y.

I wish to express my strong disapproval of the recent decision by the American Institute of Physics and the American Physical Society to delay publication of articles in *The Physical*

Review and other physics journals if the authors can not pay the publication charges.

A scholarly scientific journal is, by definition, I believe, one in which all decisions concerning publication are based strictly on the merit of the article subject to reasonable limitations on length. A journal that treats articles differently depending on the affluence of the writer or his backers can no longer be considered an independent scholarly journal but rather some kind of advertising medium. In particular this decision implies that the journal is designed to serve the author or his backers rather than the readers.

I know of no other scholarly journals that have a policy of the type now adopted by the Amercian Physical Society. Can it be that we have become so accustomed to our recent prosperity that at the first sign of financial difficulty we are willing to abandon our principles as scholars?

LINCOLN WOLFENSTEIN Carnegie-Mellon University

Excellence, truth and beauty

May I comment on your April editorial titled "The Practical Need for Beauty"?

Dirac and Einstein have always held that the search for beauty and the search for truth go hand in hand. Ugly theories are not likely to contain much valuable truth. Obviously this is a debatable point of view, but an editor (and the writer of an editorial) is certainly entitled to express his own point of view; if he has illustrious allies, so much the better.

I feel that to convey a sense of beauty, and of excitement, to all our students-ranging from physics majors to those nonscience students who are coming for a "look-see"-is one of the most important tasks facing us. To raise our standards of excellence or, as the editorial expresses it, to "encourage a few to achieve excellence" requires, first of all, that we attract to our field those who are intellectually curious and who are looking in college for something more than training for a career that promises a living. These students will be attracted to a field that is presented as high adventure for the human mind and that is relevant to the future of mankind as But these are precisely the same messages that I, for one, should like to convey to all my students, in-

GUARANTEED ONE YEAR

ULTRA LOW INDUCTANCE ENERGY STORAGE CAPACITORS

For laser, simulation and spark discharge technology . . .

FAST DISCHARGE

E-Type capacitors feature fast discharge and are designed for quantum electronics in the scientific and industrial optical community.

3 STANDARD STYLES

- EA 1 nanohenry or less inductance
- EB (very high energy) between 1 and 10 nanohenrys
- EC specifically designed for organic dye and liquid lasers

Ring frequency is measured on every unit — tested 1 minute at twice rated voltage.

E-Type series guaranteed 1 year up to 85°C at up to 100 pps.

A complete line of High Voltage DC Filter, CP70 Type, Pulse and RF Capacitors • Pulse Forming Networks • Modular Power Supplies • Special Charging Power Supplies.

CONDENSER PRODUCTS CORPORATION

Box 997, Brooksville, Florida Phone: 904–796-3562 California: 213-277-2050

WESCON BOOTH 4813

It's a whole new ball game.

And staying ahead for keeps is the name of the game.

Everywhere you look, there's a Nuclear-Chicago instrument that's playing to win.

In the compact multichannel analyzer contest, our entry has a big jump on all the others. One plug-in board turns it from a 512 to 1024-channel hotshot. And how about these high-scoring features: silicon-TTL integrated circuits, standard 106

memory, low-noise active-filter amp.

Then there's the 4096-channel analyzer we're fielding. With a performance-to-price ratio that can't be beat. Comes on strong as either a single-parameter or (with additional 100-MHz ADC's) a multiparameter analyzer. Full-parallel, random-access memory and built-in data processor plus plug-in card upgrading—a real pro right down the line. Lots more brawn, lots more brain that make everything else look sort of second-string.

Ditto for our NIM-compatible analog-to-digital converter with a 100-MHz digitizing rate. For all-out, heads-up play when teamed up with our 4096-channel analyzer. Which

becomes an unbeatable multiparameter analyzer when up to 8 ADC's are used. Maximum conversion range: 8192 channels.

And, hitting clean-up, our NIM-compatible Research Series modules. A savvy line-up of modules plus analyzers. Team-mates in a modular data-acquisition system (composed of up to 12 subsystems, each with up to 12 modules). Each subsystem accumulating and reading out independently, automatically. The new additions to our module batting order: Printing scaler. Printing timer/scaler. Data interface. Power matrix. All with low-noise electronics.

Come over to the winning side. Our side. Call your Nuclear-Chicago sales engineer or write us to learn the full score. It's your ball.

NUCLEAR-CHICAGO

2000 Nuclear Drive, Des Plaines, Illinois 60018, U.S.A.
Donker Curtiusstraat 7, Amsterdam W. The Netherlands

cluding those who will never elect physics as their professional field. To achieve these objectives, the teacher will have to apply high standards of excellence to his own presentation.

I concur with you that to treat physics as a "beautiful" subject should be foremost in our minds. I merely question that there is a dilemma between education addressed to the many and to the few. Rather I am inclined to see a dilemma between what is expected of us, the teachers of physics, and what we, frail humans that we are, can actually achieve.

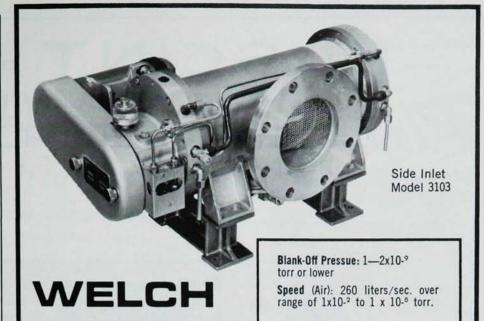
> PETER G. BERGMANN Syracuse University

Dex in addition to brigg

I would like to make an addendum to the article by Calvin S. McCamy, "Units for Logarithmic Scales" (PHYS-ICS TODAY, April, page 42). In that paper the name "brigg" was proposed for the unit of one order to base 10. The name "decade" was discarded as confusing.

There is another term that is frequently used in astronomical literature: the name "dex." Thus a difference of 3.4 in the base-10 logarithm would be written "3.4 dex." I do not know whether or not this terminology is widely used in other fields, but it is sufficiently used in astronomy to merit definition in C. W. Allen's Astrophysical Quantities, 2nd ed., London (1955).

> R. ERIK ZIMMERMANN Michigan State University


Register and Registry

For several years I have participated in the National Register of Scientific and Technical Personnel-Physics and Astronomy, which is handled by the American Institute of Physics for the National Science Foundation.

Recently I found myself on the mailing list of an organization that calls itself "The National Registry" located in New York City. This is a profit-making employment agency that has chosen a name so similar to the National Register that it may be confused with that listing maintained under NSF auspices.

People should not be misled into sending information intended for the National Register to the employment agency.

> G. TRUMAN HUNTER Greenwich, Connecticut [

Turbo-Molecular Vacuum **Pumps**

Welch Turbo-Molecular Pumps are clean, hydrocarbon-free, purely mechanical pumps for attaining high and ultra-high vacuum. They are capable of rapidly attaining extremely clean vacuum in the 10-6 to 10-7 decades

Turbos Are Non-Contaminating . . Self Cleaning . . . use no pumping fluid and do not permit back-streaming during operation. They do remove hydrocarbons from the system in unlimited quantities without use of cold

Turbos Pump Noble Gases with exceptionally high efficiency.

Turbos Pump All Gases Without Selectivity . . . air, acetylene, helium, argon, benzine and all other gases at any point within operating range.

Turbos Are Reliable-If the rotor is spinning, the turbo is pumping. It will not become "saturated" or "overloaded." It does not "bury" gases, so cannot re-eject them into the system.

Call 312/677-0600 for full information on how a superior Turbo-Molecular Pump will fit your application better.

Applications:

Mass Spectrometry Particle Acceleration Electron Microscopy Sputtering Thin Film Metalizing Solid State and Surface Studies Purification of Metals Separation of Gases Ion Gauge Calibration Tube Evacuation Target Chamber Evacuation Space Chamber Evacuation

Turbos Offer Easy Leak Detection They pump helium from 10-2 to 10-9 torr. No false signals by re-ejecting helium.

Turbos Simplify Roughing Problems, as roughing is done directly through the turbo-molecular pump . . . eliminates the need for roughing lines and valves. The turbo can be effectively started at 10 torr to take over the pumping action long before the fore pump's effectiveness drops . . . "no dead regions" in the transition from viscous to molecular flow . . . no migration of fore pump fluid vapors into the system.

Turbos Are Safe-They neither use nor produce extremely high voltages.

Turbos Offer No Operational Problems-They are not damaged by, and will recover rapidly from exposure to high pressure . . . have no hot fluids to be thermally cracked, with resultant downtime.

WELCH VACUUM PUMPS

SARGENT-WELCH SCIENTIFIC COMPANY 7300 N. LINDER AVENUE . SKOKIE, ILLINOIS 60076