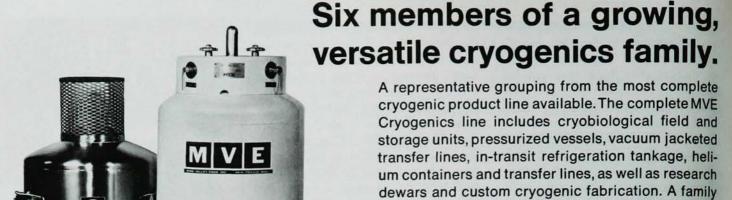
amount of unpleasant labor to pass from the second to the first group. Most members of the second group feel that as everything that can be done with Feynman diagrams can probably be accomplished by more straightforward and civilized methods, one should devote the time and labor to something more useful. Mattuck's answer to the last charge is that it is, in principle, possible to do many-body perturbation theory without diagrams, just as it is possible to go through the jungles of the Amazon without a map. However, the probability of survival is much greater if we use them.

The book is divided into three parts: kindergarten (104 pages), elementary (126 pages) and intermediate (27 pages). In chapters 1-6 a clear introduction is given to the major concepts such as Fevnman diagrams, elementary excitations, quasi-particles, Green's functions or propagators, the groundstate energy and the vacuum amplitude. The level is that of tutorials written for the American Journal of Physics. In chapters 7-16 the standard topics of other books on the PMBP such as occupation-number formalism, Dyson's equation, renormalization, random phase approximation and ladder approximation, the ground-state energy of the electron gas and nuclear matter, self-consistent per-

turbation theory and the existence of the Fermi surface, collective excitations and the two-particle propagator, Fermi systems at finite temperature and superconductivity are covered at a restricted and physically interesting level. Appendices A through I are devoted to a brief summary of Dirac's formalism and a more rigorous derivation of the rules for the diagrammatic technique that were assumed in the text. Problems are provided at the end of each chapter, and solutions are given at the end of the book. The necessary background for reading this book is a graduate course in quantum mechanics (Schiff, 3rd edition) and in electromagnetic theory (Jackson). Mattuck's fine sense of humor makes his book, which is a labor of love, a great delight to read. Additionally he knows the subject and literature very well and is a trustworthy and reliable Baedeker. A gifted expositor, he never allows the mathematics to obscure the physics. The reader is alwavs given the grand view first; so one sees both the forest and the individual

H. Chang is Senior Mathematical Physicist, Stanford Research Institute. He says he learned PMBP the hard way "by reading the literature and the pre-Mattuck books."

For accelerator users


PARTICLE ACCELERATION. By J. Rosenblatt. 183 pp. Barnes & Noble, New York, 1968. \$5.50

by NORMAN A. BAILY

The development and increasing availability of high-energy charged-particle accelerators has provided a valuable tool not only for nuclear physics, but also biology and medicine, space science and nuclear engineering. Accelerator users cover the spectrum of basic scientists and also include the engineer faced with producing hardware that must survive in nuclear and space environments. In addition cancer patients have been treated for many years with Van de Graaff generators, linear accelerators and even synchrocyclotrons; now there is interest in fast-neutron generators using the d,t reaction.

Although this book purports to serve not only the intermediate undergraduate student of physics but also accelerator users, it is, in my opinion, deficient from this second point of view. To provide insight into the operation and design, the author discusses principles, but they require more background in physics than the average nonphysicist user is likely to have. The book reviews the basic principles of particle physics and nuclear interactions and scattering; the author introduces the particles of highenergy physics and includes a chapter on the fundamental physics associated with particle acceleration. The book includes chapters on static machines, linear and circular accelerators, strong focusing, alternating gradients and azimuthally varying fields. The final chapter discusses recent and anticipated developments and some new principles for machine designs. The book would make an excellent text for a section of an undergraduate nuclearphysics course or can serve admirably

For further information, contact

of superior products, matched by superior service.

MINNESOTA VALLEY ENGINEERING, INC.

NEW PRAGUE, MINNESOTA 56071 U.S.A. TELEPHONE 612-758-4484 – CABLE MVE INC.

CRYO-DIFFUSION S.A. – 28 RUE BAYARD PARIS, FRANCE – TELEPHONE 225-53-69

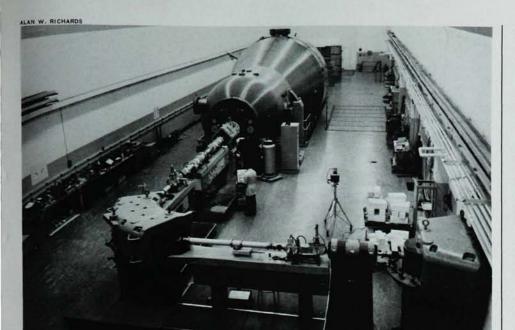
PHYSICS

INTERNATIONAL

Scientists and engineers at PI are conducting research programs that have already expanded the frontiers of several scientific fields. Prominent men of many disciplines and backgrounds have created a highly stimulating and productive atmosphere. The rapid growth in these programs has created several extremely challenging new positions. Coupled with this professional environment are the many physical and cultural advantages of the San Francisco Bay Area. These offer a diversity of winter and summer activities as well as both urban and rural living conditions.

Career opportunities exist in the research areas listed below for men with B.S., M.S., and Ph.D. degrees, with or without experience.

- ADVANCED PULSED POWER SYSTEMS
 —HV pulse generation, pulsed radiation sources, HV breakdown phenomena, ultra high current electron beams.
- HYDRODYNAMICS—high performance shock tubes, hypervelocity acceleration, aerodynamics, detonation phenomena.
- STRESS WAVE PROPAGATION—dynamic response of materials, shock geophysics, equation of state.
- THEORETICAL PHYSICS—radiation transport, stress wave propagation, heat transfer, gas dynamics, MHD.
- NUCLEAR WEAPONS EFFECTS—vulnerability analysis, transient radiation effects in electronics, blast effects, hardening.


If you would like more information about employment opportunities at Physics International, please contact:

PHYSICS INTERNATIONAL COMPANY

An equal opportunity employer

2700 Merced Street, San Leandro, California 94577 (415) 357-4610 Stuart A. Blair, Personnel Representative

EMPEROR TANDEM Van de Graaff at Yale with magnets and beam piping.

as a detailed reference for an intermediate general-physics course. It is clear and concise and covers the subject matter treated extremely well. The book, however, is deficient in its coverage of applications, and the author fails to point out in a specific manner the importance of applications. However, he does point out quite clearly the limitations of each type of accelerator and the difficulties that have been overcome in the time sequence of machine development. He also treats, in a remarkably clear manner, the way in which each of the original restrictions were overcome.

Norman A. Baily is a radiological physicist and professor of radiology at the University of California, San Diego.

Shock-wave technique

RELAXATION IN SHOCK WAVES. By Ye. V. Stupochenko, S. A. Losev, A. I. Osipov. (Trans. from Russian) 394 pp. Springer-Verlag, New York, 1967. \$18.00

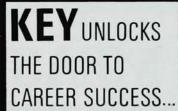
by EUGENE WIGNER

Shock waves are of considerable interest to the physicist, the physical chemist and also to the chemist. The gradual deformation of the front of a pressure wave, until its leading edge becomes so sharp as to represent a discontinuity in pressure, temperature

and velocity, is in itself a surprising phenomenon. It occurs if the initial amplitude of the pressure wave is so high that the second-order terms in the hydrodynamic equation are more effective than those due to viscosity and heat conductivity. The original explanation of the phenomenon by Bernhard Riemann went hand in hand with his discovery of the method of characteristics to solve differential equations.

The theory of shock waves is of great importance for gauging the effect of explosions, and much of what we know about them originates in weapons laboratories. The present volume, however, describes their use for physical measurements, such as the measurement of the rate at which translational energy is converted into rotational and vibrational energy in gases or causes dissociation and ionization. The term "relaxation" in the title of the book refers to the establishment of equilibrium between the energy contents of the translational, rotational and vibrational degrees of freedom. Shock waves are particularly suited for the measurement of rapid processes, because the period during which the shock passes through any part of the material-and hence the period during which this is exposed to the shock's elevated temperature-can be made very short, even as compared with the time of equilibration of rather fast processes.

The Calculus of Physics


McAllister H. Hull, Jr. Oregon State University 128 Pages \$8.50 Cloth/\$2.95 Paper

This supplement was written for beginning physics students who encounter numerous mathematical techniques and concepts before this material is covered in corresponding mathematics courses. The topics in this book that are normally covered in courses in elementary university mathematics include differential and integral calculus of one variable, vectors, partial differentiation and multiple integrals, complex algebras, matrices, linear differential equations of first and second order with constant coefficients. In his "Note to the the author keys each Student. section of the book to the widely used physics texts, The Berkeley Physics Course and Physics (Resnick and Halliday).

Write for a complimentary copy. Specify name and enrollment of your course, and indicate textbook currently used.

W. A. BENJAMIN, INC.

2 PARK AVENUE - NEW YORK 10016

KEY PERSONNEL

A NATIONAL SEARCH ORGANIZATION

EXCLUSIVELY FOR ENGINEERS & SCIENTISTS

ETHICAL AND ENTHUSIASTIC COAST TO COAST CLIENTS

NO FEES

KEY PERSONNEL

ONLY ONE RESUME NECESSAR MR. JOHN F. WALLACE EXECUTIVE VICE PRESIDENT KEY PERSONNEL CORPORATION 218 TOWER BUILDING, BALTIMORE, MD. 21202