books at Washington APS meetings, but this year is the first time that instruments will be exhibited as well. Some 75 companies will occupy 93 booths. Show hours are 9–5:30 Monday through Wednesday and 9–noon Thursday.

At the first general interest session Monday afternoon, astronaut Frank Borman will describe his Christmas Eve flight around the moon. Other panelists include Carroll O. Alley Jr of the University of Maryland and P.M. Muller of the Jet Propulsion Lab. Charles H. Townes will moderate.

Tuesday evening Luis W. Alvarez, APS president, will preside over the missile session. Hans A. Bethe, George Rathjens, Eugene P. Wigner and Donald Brennan will describe technical features of the ABM system and their own conclusions.

At a Wednesday afternoon general session, Alvarez will describe his attempts to map the inside of pyramids by charting cosmic-ray anomalies; Gregory Breit, who will receive the Bonner Prize, will discuss nucleon-nucleon scattering; and H. H. Barschall, retiring chairman of the nuclear physics division, will talk on MeV-neutron interactions with protons, deuterons and alpha particles.

The banquet will follow Wednesday evening. The scheduled speaker is Rep. Emilio Q. Daddario, chairman of the House Subcommittee on Science, Research and Development.

SPS Gives 9 Undergraduate Cash Awards for Research

Nine colleges and universities have received cash awards, ranging from \$205–360, for special undergraduate research in physics and astronomy. The Society of Physics Students, an American Institute of Physics organization, selected the winners. Awards were financed by a \$2500 Bendix Corp grant.

Recipients were Colgate University for radio telescope construction; Marshall University, West Virginia, for holographic recording of defects in silver chloride crystals; McMurry College, Texas, for a ground station to receive pictures from weather satellites; University of Richmond for work on the dependence of cerium metal's resistivity on temperature and crystalline structure at low temperature; Thomas More College,

Three Versatile Ways to High Magnetic Fields

Obtain Outstanding And Reliable Performance Characteristics With GE Superconductive Products:

1. Complete Systems

Buy a complete General Electric high field superconductive magnet system guaranteed to meet exacting specifications. These high performance systems feature GE's modular magnet concept and Nb Sn tape for greater high field reproducibility and reliability.

GE's complete superconductive solenoid system with flux pump type or conventional power supply.

2. Modules

Or, at a considerable saving, build your own basic superconductive magnet system with General Electric's individual magnet modules. Later increase field or improve field uniformity by adding modules without the cost of a completely new system.

Superconductive Nb₃Sn tape modules for versatile magnet construction.

3. Materials

Do it all yourself with customized Nb₃Sn materials manufactured by GE's patented diffusion process. These high performance materials can be designed to meet specific stability, current and strength requirements for any magnet application.

Superconductive dipole and quadrupole.

Whatever your high field magnet needs, for really outstanding performance, field reproducibility and reliability, please write General Electric Company, Superconductive Products Operation—A.M.B.S., Schenectady, New York 12305, or call Charles Horlbeck, (518) FR 4-2211, Ext. 5-5475.

BOOTH 9, SPRING PHYSICS SHOW

LASER RAMAN SPECTROSCOPY with the

Ramalog ... including: LASER SOURCE He-Ne or Ar+/Kr+

SAMPLE ILLUMINATOR

with ten-fold gain in measured light

DOUBLE SPECTROMETER

with additive double dispersion; readout in cm-1 and △cm-1

DETECTION PHOTOMULTIPLIER

with certification for photon counting and extended red response

AMPLIFICATION

with picoammeter and optional photon counting for all-around versatility

RECORDER

with presentation from 0.5 cm⁻¹ to 400 cm⁻¹ per inch

INSTRUCTION AND TRAINING

with our laser-Raman specialists in Spex' lab plus installation in yours

Kentucky, for an acoustically modulated Mössbauer spectrometer; and Wisconsin State University for activities to increase physics enrollment.

AAPT Announces Winners of Apparatus Competition

Two MIT instructors have shared the \$600 first prize in the biennial apparatus competition of the American Association of Physics Teachers and the American Institute of Physics. Second- and third-prize awards went to teams from Pennsylvania State and Rutgers; \$100 special merit awards also were made.

Noel A. Clark and Joseph H. Lunacek won with their measurement of Brownian-motion fluctuations by scattering light from particles suspended in water. The spectrum of the photomultiplier detector's output gave information on the fluctuation and diffusion constant.

Apparatus showing the principles of electron and ion optics and vacuum physics won Bruce R.F. Kendall, H.M. Luther and Donald David the \$400 second prize.

Herman Y. Carr, R.T. Weidner and G.H. Muller demonstrated elastic or inelastic collisions of two objects from opposite directions for the third prize, \$200.

Receiving special merit awards were T.G. Owe Berg of T.G. Owe Berg, Inc; Richard E. Extermann of Copper Union; John M. Goodman of Harvey Mudd College; and Harold M. Waage of Princeton.

Humanists Dissect Morals, Models, Graphics of Science

A group of articulate "outsiders" probed the morality of physics, the philosophy of model-building and the cinematic techniques of explaining scientific concepts at a special American Association of Physics Teachers symposium. Ronald Geballe, incoming AAPT president, moderated talks by three nonscientists: novelist Kurt Vonnegut, architect Arthur Drexler and film-maker Charles Eames.

Vonnegut contended that regard for human life should lead scientists to withhold potentially dangerous information and refuse to work on weapons. But Drexler drew the most reaction from the audience with his assertion

Generation Gap

The Wang 700 Calculator is a whole lot smarter than its predecessors.

It's the first of a new breed, a third generation programmable calculator. The difference is more revolutionary than evolutionary. It's ten times faster and more powerful than the best of the 2nd generation machines. It handles far longer programs (learns on a built-in 8192-bit core and stores permanently up to 10 blocks of 960 steps each on snap-in magnetic tape cassettes), has many more data storage registers (up to 120), and provides more hardware operations (like logs to base e and base 10, π , e^x , 10^x , etc.), than any existing calculator or so-called desk-top computer.

Execution speeds for various functions range from 300 μ sec for + and - to 250 msec for trig functions. A dual Nixie-type display produces 12 digit answers plus 2-digit (-98 to +99) exponents each register.

The Wang 700 has commands for loops, branches and subroutines, unmatched power for matrix and array operations. Exclusive integrated circuit design concentrates all these capabilities into a self-contained, convenient desk-top package. It's the logical heir to Wang leadership in high performance problem-solving.

Dept. 4AN, 836 North St., Tewksbury, Massachusetts 01876 • Tel. 617 851-7311

Call today

for immed	iate trial:	(313) 278-4744	(502) 426-1116	(608) 244-9261	(714) 234-5651
(201) 241-0250	(216) 333-6611	(314) 727-0256	(504) 729-6858	(612) 881-5324	(716) 381-5440
(203) 223-7588	(301) 588-3711	(315) 463-9770	(505) 255-9042	(615) 588-5731	(717) 397-3212
(203) 288-8481	(301) 821-8212	(317) 631-0909	(512) 454-4324	(616) 454-4212	(801) 487-2551
(205) 881-5360	(303) 364-7361	(402) 341-6042	(513) 531-2729	(617) 542-7160	(805) 962-6112
(206) 622-2466	(304) 344-9431	(404) 633-6327	(517) 835-7300	(617) 851-7311	(816) 444-8388
(212) 682-5921	(305) 563-8458	(405) 842-7882	(518) 463-8877	(702) 322-4692	(817) 834-1433
(213) 278-3232	(305) 841-3691	(412) 366-1906	(601) 234-7631	(703) 595-6777	(901) 272-7488
(214) 361-7156	(309) 674-8931	(414) 442-0160	(601) 982-1721	(713) 668-0275	(916) 489-7326
(215) 642-4321	(312) 297-4323	(415) 692-0584	(602) 265-8747	(713) 668-3753	(919) 288,1695