has not been measured; we do not regard the 5/2- octet as being particularly "well established."

In the letter of Alitti and colleagues both abstract and text claim a discovery and a new conjecture, but at least in their footnotes they admit that this is not so. The PHYSICS TODAY news story accepts these claims without qualification. The letter was already misleading; your story was just wrong.

PHILIP DAUBER, ARTHUR H.
ROSENFELD, GERALD R. LYNCH,
CHARLES G. WOHL
University of California, Berkeley

A REPLY FROM BROOKHAVEN: In response to the negative remarks of Dauber, Rosenfeld, Lynch and Wohl concerning the short item, "New Cascade Particle Completes 5/2- Octet," we will restrict our comments to their reference to the *Physical Review Letter* of Alitti et al.

(a) The Physical Review Letter of Alitti et al was far from misleading. It is clearly and unambiguously stated, "The earlier data, although suggestive, were far from convincing because of limited statistics and difficulties with interference effects. The inconclusive nature of the old data is also indicated in the latest compilation by Rosenfeld et al."1 The importance of the present experiment is that it has a much greater statistical validity than the experiment of Badier et al and is free from the systematic difficulties of the experiment of Smith et al (as partially acknowledged by Dauber et al).

(b) It should be noted that essentially the same Berkeley data have been interpreted by the same authors in two different ways: (1) as evidence for a $\Xi(1820)$ (Dubna Conference 1964)² and (2) as evidence for a $\Xi(1930)$ (Athens Conference 1965).³ We believe that data that allows such flexibility of interpretation is certainly not conclusive. This conclusion is reinforced by the existence of an enormous time lag between the availability of the Berkeley Ξ data, 1965, and its publication in The Physical Review or Physical Review Letters, 1969.

(c) Concerning the question of the $5/2^-$ octet, we must again refer to Rosenfeld's compilation. Here the N(1680), $\Lambda(1827)$ and $\Sigma(1765)$ are

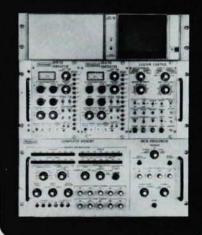
noted to have $J^p = 5/2$. With the addition of the \(\pi\)(1930) one notes that the Gell-Mann-Okubo mass formula is satisfied and that nine experimental decay rates are fitted rather well by three parameters in the SU(3) formulation of the octet. To quote Alitti et al, "An application of the Gell-Mann-Okubo mass formula suggests that it is a member of a $J^P =$ 5/2- baryon octet and detailed SU (3) study of the total and partial widths of the member states seems to give a reasonable overall consistent picture." If one is not convinced of the existence of the octet unless the $\Xi(1930)$ spin and parity are also measured then the present experiment clearly cannot convince Dauber et al of the existence of the 5/2- octet. On the other hand, we note that these same men did not take exception to the existence of the 3/2+ decuplet noted in the same PHYSICS TODAY item although the spin of the Ω - has yet to be measured.

With respect to the actual PHY-SICS TODAY item, we believe the use of "established the existence of" instead of the word "found" may be a more precise and less controversial way of "telling it how it really was."

References

- Review of Particle Properties, UCRL 8030, August 1968.
- Proceedings of the 12th International Conference on High Energy Physics (Dubna, 5-15 August 1964) page 600.
- Proceedings of Athens Second Topical Conference on Resonant Particles (10–12 June 1965) page 251

R. RONALD RAU
NICHOLAS P. SAMIOS

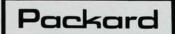

Brookhaven National Laboratory

Citations and evaluation

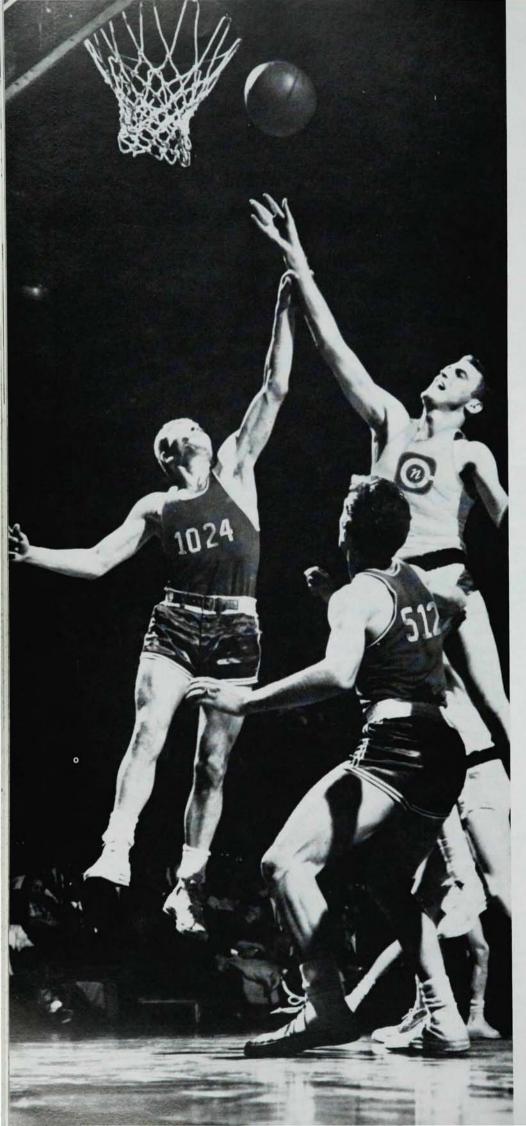
In a letter to physics today in 1953,¹ M. J. E. Golay proposed the preparation of a referenced-author index, or what is now known as a "citation index," as a tool for bibliographic search and as a means of dealing with "one of the knottiest tasks faced by scientific management, namely the problem of evaluating published research results." Doubtless many are aware of the existence of the Science Citation Index, which has been published annually since 1964 by the Institute for Scientific Information of Philadelphia. It is the particular purpose of this let-

Announcing 900 Series Multichannel Analyzers

We've Just Multiplied Your Analysis Capability



These new analyzers help you work faster, easier and with greater precision in every area of research. Critical analyzer functions have been automated or superimposed to reduce experiment time and operating effort ... optional or accessory functions have been built in, eliminating the inconvenience of extra modules and add-ons ... operational specifications are unsurpassed.


Check these features:

- No Dead Time—Unique circuitry corrects for dead time losses
- 100 MHz ADC plus 2µsec memory cycle time
- Simultaneous Data Accumulation and Readout
- "Automatic" mode provides storage, stripping, transfer and readout
- One-pass spectrum stripping completely eliminates repetitive, tedious button punching
- Store, Display and Read Out any Subgroup
- Built-in, true dual input multi-scaling
- Expandable Memory (10⁶ capacity/ channel)
- Dual Parameter capability by addition of second ADC

Write for Bulletin 900T to Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois 60515 or Packard Instrument International S.A., Talstrasse 39, 8001 Zurich, Switzerland.

A SUBSIDIARY OF AMBAC INDUSTRIES, INC.

It's a whole new ball game.

The tide has turned. To our compact multichannel analyzer. The one that gives you a new edge in the cost vs. capability contest.

It's field-expandable—one plug-in board turns it from a 512 to a 1024-channel hotshot.

A low-noise, active-filter amplifier makes pinpoint accuracy look easy. Silicon TTL integrated circuits mean reliability.

A 106 memory is standard. A built-in data processor gives you high-scoring curve/peak integration and resolving.

And this analyzer is all over the court, making the tough plays, because it's got all sorts of human-engineered design features. Takes on almost any kind of input/output option, too.

There's more of course. Call your Nuclear-Chicago sales engineer or write us about our new 512/1024 multichannel analyzer. It's got a big jump on the others.

NUCLEAR-CHICAGO

A SUBSIDIARY OF G. D. SEARLE & CO.

2000 Nuclear Drive, Des Plaines, Illinois 60018, U.S.A. Donker Curtiusstraat 7, Amsterdam W. The Netherlands AP5-202

ter to call the attention of fellow physicists to studies that aim to evaluate various ways of using the citation index to deal with the knotty task identified by Golay. A pertinent bibliography is given on pages 7 and 8 of part I of the Science Citation Index for 1967.

Of particular interest to physicists is a paper² that appeared in the American Sociological Review in June 1967 by S. and J. R. Cole entitled "Scientific Output and Recognition: A Study in the Reward System of Science." This study uses a number of methods to determine the validity of various ways of using the Science Citation Index to measure scientific recognition for physicists. The results for a group of 120 physicists support a claim that various measures of citation frequency correlate highly with other measures of recognition.

It must be emphasized, of course, that no single number can responsibly be substituted for detailed study of the total professional output of a scientist in evaluating his professional performance. But those who must evaluate published research will certainly be remiss in their responsibilities if they ignore the evidence that citation frequency is a significantly validated, readily ascertainable, objective measure of scientific recognition of published research of physicists.

The ready availability of citation data and their validation as a measure of scientific recognition of the published research of physicists also opens the possibility of evaluating the operation of local reward systems in those employment situations in which published research is allegedly a major determinant of rewards. Studies of citation frequency versus rewards within those employment environments might generate evidence of favoritism or discrimination and therefore could eventually lead to appropriate corrective action.

References

- M. J. E. Golay, "Referenced-Author Lists," Physics Today 6, no. 1, 20 (1953).
- S. Cole, J. R. Cole, American Sociological Review 32, 377 (1967).

LAWRENCE CRANBERG
University of Virginia,
Charlottesville

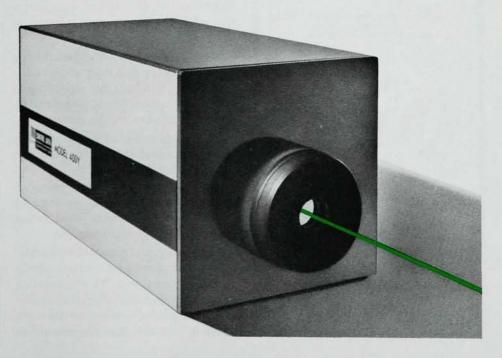
Here's the first YAG laser to offer modular design. You can get the basic unit and add the "building blocks" you need from stock — now or in the future.

The versatile TRG Model 400Y Nd doped YAG laser system is adaptable to over 12 different configurations. It delivers over 20 watts of continuous infrared power at 1.06 μ for welding, resistor trimming, silicon dicing, other fabrication work. It can also be operated in single mode with a Barium Sodium Niobate second harmonic crystal for up-conversion to several hundred milliwatts of continuous green light at 0.53 μ for such applications as underwater television, holography, or aerial mapping.

Options include a Q-switch module to provide up to 2000 pulses per second at up to 7.0 kilowatts per pulse; three interchangeable laser rods (3, 5, and 6.5 mm); choice of open cavity, or closed cavity design for highest output; optics and temperature control module for up-conversion to green laser light, and a recollimating telescope.

Other features: High reliability . . . e.g., 1,000 test hours without lamp, crystal, or power supply

malfunction. Easy alignment . . . confocal Fabry-Perot cavity. Simplified maintenance . . . lamp and other components are


readily accessible without disturbing alignment.

Call or write for detailed information to Control Data Corporation, Melville Space and Defense Systems Division, TRG Laser Products, 535 Broad Hollow Road, Melville, New York 11746. Or phone: (516) 531-6344.

WHAT NEXT IN LASERS? ASK ...

CONTROL DATA

SPACE AND DEFENSE SYSTEMS

