His most recent interest was in the physics of porous membranes; he was the author of a total of 50 technical publications.

Frank Matossi, Physical Chemist, Dies in Germany

Frank Matossi, professor of physical chemistry at the University of Freiburg, West Germany, died unexpectedly last year.

Born in Germany, he was a research fellow at the Kaiser-Wilhelm Institute under Peter Debye. In 1940 he became an associate professor at the University of Graz and director of the Institute of Physics. After the Second World War, he came to the US and was a research scientist at the Naval Ordnance Laboratory in Maryland until he accepted his last position at the University of Freiburg.

His work was mainly in the vibration spectra of crystals, although it included Raman and infrared spectra and luminescence.

Gunnar Källén Was Theoretical Physicist

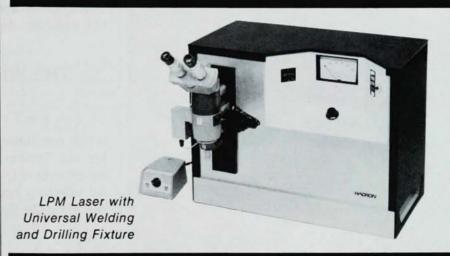
Gunnar Källén, a professor at the University of Lund, Sweden, was killed in a plane accident near Hanover, while flying to Geneva to attend the European Committee for Future Accelerators meeting as Sweden's representative.

A theoretical physicist, Källén's main interest was quantum electrodynamics. He was one of the first to study exact analyticity properties implied by the general principles of local field theory. Holding a chair of theoretical physics at the University, he was interested in European collaboration in physics, After being a member of the CERN early theory group in Copenhagen, he was in contact with its theory division in Geneva.

Sister Mary Allard; Chairman at D'Youville

Sister Mary John Allard, chairman of the chemistry and physics department at D'Youville College, died this winter after a short illness.

She took her master's degree at Catholic University and returned there to receive her PhD in physical chemistry in 1966. She became chairman at D'Youville in 1963.


Sister Allard belonged to the Grey Nuns of the Sacred Heart.

HADRON

No longer do you need different lasers for different applications. Take our LPM Series — it's equally at home in the factory and in the laboratory. Using building block techniques, the entire LPM Series can easily be adapted to your requirements by the addition of standard fixtures.

Precision-engineered to meet production tool standards, the reliable and easy-to-operate LPM with its rugged ruby laser head is ideal for such industrial processes as microwelding, trimming, drilling, and dynamic balancing. The interlocking of work fixtures minimizes radiation hazards in industrial applications. Since little maintenance and no mechanical or electrical adjustments are required after initial installation, the "on-the-line" performance of this laser is excellent, making it a true production tool.

THE CONCEPT

INLASERS

In the laboratory, the LPM series will satisfy the most exacting standards of the scientific researcher. It is a proven instrument for such varied tasks as fluorescence analyses, materials evaluations, radiation studies, and general laboratory applications. Economical to operate (uses 120-volt line voltage and requires only ½ gallon of water per minute for cooling), easy to connect, and light in weight (125 pounds), the entire laser system can readily be moved from one experiment to the other.

Available with Integral Pockels Cell Q-Switch •
Output Energy (Normal Mode) up to 5 joules •
Repetition Rate up to 1 Pulse per Second • Pulse Width
800 Microseconds • Size 24" W x 18" H x 12" D •

For complete specifications, price and delivery information call or write:

300 Shames Drive Westbury, N. Y. 11590 516-334-4402