in elementary particles. The award includes a citation, plaque and \$10 000. A matching sum was given to Cal Tech.

Gell-Mann's SU(3) theory predicted the omega-minus particle, which was subsequently found in experiments at Brookhaven National Laboratory (PHYSICS TODAY, April 1964, p. 57). Appointed Millikan Professor of Theoretical Physics in 1967 at Cal Tech, he was also visiting professor in 1967–8 at the Institute for Advanced Study at Princeton.

The Research Corporation, a foundation for the advancement of science, gives the award annually for major scientific contributions to human knowledge.

#### Geological Penrose and Day Medal to Wilson and Vine

The Geological Society awarded the Penrose Medal and the Arthur L. Day Medal to John Tuzo Wilson and Frederick J. Vine, respectively. The Penrose Medal, the society's highest award, honors research in pure geology; the Day Medal recognizes contributions to geology through the use of physics and chemistry.

Wilson is professor of geophysics at the University of Toronto and is known for his research on the physics of the earth and on intercontinental comparisons of geology. At Toronto, he initiated new applications of nuclear science to geology, especially in radiometric dating by the potassium-argon and lead methods.

A member of the geological and geophysical sciences department at Princeton University, Vine was a participant in the International Indian Ocean Expedition. He is currently interested in the paleomagnetic study of continental material, but is also continuing research in marine geology.

### Maryland Young Scientist Award to Howel Pugh

Howel G. Pugh of the University of Maryland was the recipient of the Maryland Academy of Sciences 1968 Outstanding Young Scientist Award. Pugh was cited for his experiments on the structure of nuclear systems and their reactions, his contributions to cyclotron design and his role as a teacher. The award consists of \$500 and a gold medal.

Receiving a distinguished young

scientist certificate for physics was Raymond D. Mountain of the heat division, National Bureau of Standards. He was noted for his studies of relaxation processes in fluids and their effects on the inelastic scattering of light.

#### Coblentz Award to Zerbi For Infrared Spectroscopy

Guiseppe Zerbi from the University of Milan will receive this month the 1969 Coblentz Award for his work in theoretical spectroscopy, especially the elucidation of polymer structure.

The award is given annually by the Coblentz Society for contributions to infrared spectroscopy by a scientist younger than 36. The international society is named in honor of W. W. Coblentz, who was a pioneer in infrared spectroscopy at the National Bureau of Standards.

#### Royal Society Honors Gabor with Rumford Medal

The British Royal Society awarded its Rumford Medal to Dennis Gabor, staff scientist for CBS Laboratories. Given biennially for discoveries in light or heat, the award was presented to Gabor for contributions to optics and for the discovery of holography.

Gabor, also professor emeritus of the Imperial College of London, has been responsible for advancements in communication and color television. The Rumford Medal was founded in 1796 by Count Rumford (Benjamin Thompson).

#### OSA Tillyer Medal to Riggs; Richardson Medal to Cary

The Optical Society of America will give this month the Edgar D. Tillyer Medal to Lorrin A. Riggs and the David Richardson Medal to Howard Carey. Riggs is cited for his work in the electrophysiology and psychophysiology of the human visual system; Cary for his contributions to instrumentation design and production in areas from spectroscopy to chemical, medical and nuclear research.

Riggs is presently a professor at Brown University and was from 1960 to 1968 the L. Herbert Ballou Foundation University Professor. He now holds the Edgar J. Marston University Professorship in Psychology. Developing a method for recording the electroretinogram, he studied the electrophysiological and psychophysical ef-



## Wide Band, Precision

# **CURRENT MONITOR**

With a Pearson current monitor and an oscilloscope, you can measure pulse or ac currents from milliamperes to kiloamperes, in any conductor or beam of charged particles, at any voltage level up to a million volts, at frequencies up to 35 MHz or down to 1 Hz.

The monitor is physically isolated from the circuit. It is a current transformer capable of highly precise measurement of pulse amplitude and waveshape. The one shown above, for example, offers pulse-amplitude accuracy of +1%, -0% (typical of all Pearson current monitors), 10 nanosecond rise time, and droop of only 0.5% per millisecond. Three db bandwidth is 1 Hz to 35 MHz.

Whether you wish to measure current in a conductor, a klystron, or a particle accelerator, it's likely that one of our off-the-shelf models (ranging from  $\frac{1}{2}$ " to  $10\frac{3}{4}$ " ID) will do the job. Contact us and we will send you engineering data.

#### PEARSON ELECTRONICS INC

4007 Transport St., Palo Alto, California 94303 Telephone (415) 326-7285

