quent reference to good figures (foldout panels) at the backs of the books. Better use is made of these figures than in standard textbooks since many detailed questions are asked about them and the student develops a taste and habit for seeking out the details of a figure.

Some of the weaknesses of the books are inherent in programmed texts. It would be nice if the narrative sections were a little longer and told the student a lot more than he needs to know to answer the questions. As it is, the questions come with an uncomfortably high frequency. It would also help if there were some really difficult qualitative questions so that the student would have deep problems on which to sharpen his imagination.

* * *

Gerald Pollack, a professor at Michigan State University, often teaches freshmen and sophomores who are either science or liberal-arts majors.

NEW BOOKS

CONFERENCE PROCEEDINGS

Excitons, Magnons, and Phonons in Molecular Crystals. (symp. proc.) A. B. Zahlan, ed. (American University of Beirut, 15–18 Jan. 1968) 224 pp. Cambridge Univ. Press, 1968. \$11.50

Exploding Wires, Vol. 4. (conf. proc.) William G. Chace and Howard K. Moore, eds. (Boston, Mass., 18–20 Oct. 1967). 384 pp. Plenum, New York, 1968. \$17.50

Mechanics of Generalized Continua. (symp. proc.) E. Kröner, ed. 358 pp. Springer-Verlag, New York, 1968. \$19.50 Theory of Condensed Matter. (symp. proc.) International Atomic Energy Agency, eds. (Trieste, 3 October–16 December 1967). 1015 pp. \$20.00.

Fundamental Particle Physics. (symp. proc.) Gyo Takeda Yasuo Hara, ed. (Tokyo, 1967). 167 pp. W. A. Benjamin, New York, 1968. \$8.50.

ELEMENTARY PARTICLES

Particles and Their Interactions. By J. G. Powles. 260 pp. Addison-Wesley, Reading, Mass., 1968. \$4.95

NUCLEI

Nuclear Physics: An Introduction. By Haro von Buttlar. 547 pp. Academic Press, New York, 1968. \$14.50

ATOMS, MOLECULES, CHEMICAL PHYSICS

Tables of Spectral Lines of Neutral and Ionized Atoms. By A. R. Striganov and N. S. Sventitskii. 899 pp. Plenum, New York, 1968. \$12.50

Electronic and Vibrational Spectra of Molecules. Vol. 35. D. V. Skobel'tsyn, ed. 217 pp. Plenum (Consultants Bureau), New York, 1968. \$22.50.

Electron Impact Excitation of Atoms. (NSRDS-NBS 25). By B. L. Moiseiwitsch and S. J. Smith. 116 pp. National Bureau of Standards, Washington, DC, 1968. \$2.00

Methods in Experimental Physics, Vol. 7B: Atomic and Electron Physics. Benjamin Bederson and Wade Fite, eds. 374 pp. Academic Press, New York, 1968. \$17.00

Advances in Chromatography, Vol. 7. J. Calvin Giddings and Roy A. Keller, eds. 313 pp. Marcel Dekker, New York, 1968. \$15.75

ELECTRICITY AND MAGNETISM

Magnétostatique. By E. Durand. 673 pp. Masson et C^{1*}, Paris, 1968. 130F

SOLIDS

Optical Interactions in Solids. By Baldassare Di Bartolo. 541 pp. John Wiley, New York, 1968. \$19.95

Microstructures of Surfaces. By S. Tolansky. 65 pp. American Elsevier, New York, 1968. \$8.00

ASTRONOMY, SPACE, GEOPHYSICS

The Origin of Cosmic Radiation and the Expansion of the Universe. By E. Bagge. 62 pp. \$2.50

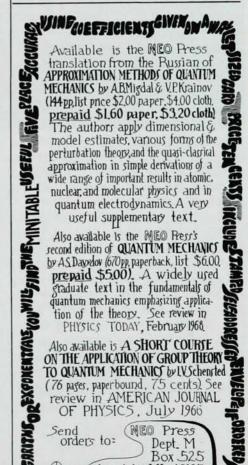
The Sun and Its Influence. By M. A. Ellison. 240 pp. American Elsevier, New York, 1968. \$5.50

An Introduction to Planetary Physics. By William M. Kaula. 490 pp. John Wiley, New York, 1968. \$14.95

BIOPHYSICS

Advances in Biomedical Engineering and Medical Physics, Vol. 2. S. N. Levine, ed. 390 pp. John Wiley, New York, 1968. \$16.50

Medical and Biological Physics. By H. C. Webster and D. E. Robertson. 340 pp. University of Queensland Press, St. Lucia, Queensland, Australia. 1967. \$10.20

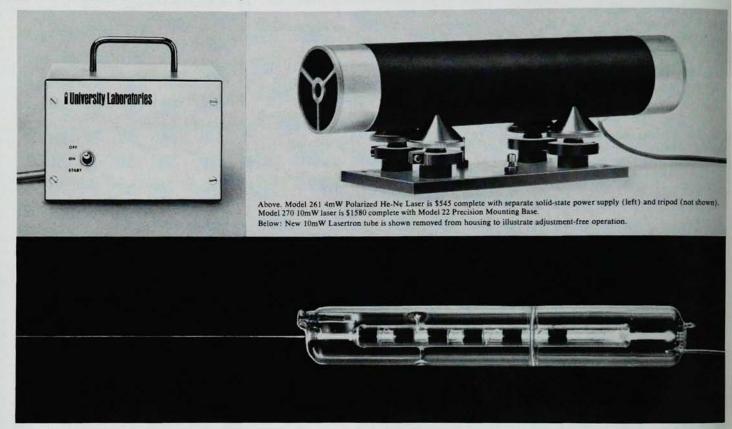

THEORY AND MATHEMATICAL PHYSICS

Lagrangian Dynamics: An Introduction for Students. By C. W. Kilmister. 136 pp. Plenum, New York, 1968. \$7.50 Dynamics of Elastic Containers Partially Filled With Liquid. (Trans. from Russian). By I. M. Rapoport. 420 pp. Springer-Verlag, New York, 1968. \$14.80 Hermann Weyl Gasammelte Abhandlungen, Band I, II, III, IV. K. Chand-

OPTICAL ENGINEER

Dynamic Electro-photo-optical firm in San Francisco Bay Area offers exciting; research opportunities under Nobel scientist in optics remote sensing, multi band photograph, EDP peripheral equipment. Demands creative, original thinker with graduate degree, physics or optics. Submit resume, salary history and field of interest to our consultant.

R. C. Pruitt HR Research Associates 260 California Street San Francisco, California


Calculator

Ann Arbor, MI 48107

THE NEO PREST

Announcing the 4 and 10 milliwatt no-nonsense lasers

No adjustment. No alignment. No maintenance. Ever.

These are University Laboratories' brand new Models 261 and 270 helium-neon lasers. They are the only 4 and 10 milliwatt rate, detachable, low ripple solid-state lasers in the world, regardless of cost, power supply is included. And, as with all which are totally adjustment-free!

tubes, standard in all UL instruments, have internal mirrors inside a rigid coaxial glass envelope, permitting permanent factory adjustment. Collimation is built in, and alignment stability is guaranteed. You never have to peak them up, even in hostile environments or after extended ageing.

Lasertron tubes are available separately for systems applications, and operate equally well with or without a housing. Output exceeds 4mW of polarized power

at 6328Å (Model 261) or 10mW (Model 270), in the uniphase TEMoo mode. A sepa-UL lasers, the entire instrument is war-Their remarkable Lasertron™ plasma ranted for one full year with no restriction on operating hours.

Use the coupon below to order any of the six listed laser instruments using the proven Lasertron tube concept.

Over 10mW output. Independent laser head with separate solid-state power supply and Precision Mounting Base.

MODEL 261 \$545
Over 4mW plane polarized output. Independent laser head with expandable tripod mount. Separate solid-state power supply. Precision Mounting Base \$185 additional.

MODEL 241 \$385 Over 2.0mW plane polarized output. Independent laser head with expandable tripod mount. Separate solid-state power supply.

MODEL 240 \$295

Over 1.0mW output. Independent laser head with expandable in pod mount. Separate solid-state power supply

MODEL 201 \$255

Over 1.0mW output with self contained solid-state power supply

MODEL 200 \$195

Over 0.6mW output with self contained solid-state power supply

purchase order and shipp Name Organization		ns will follow.
Address		
City	State	Zip

a University Laboratories

733 Allston Way/Berkeley, Calif. 94710/(415) 848-0491

rasekharan, ed. 689 pp., 647 pp., 791 pp., 694 pp. Springer-Verlag, New York, 1968. \$42.00

Selected Scientific Papers of Egil A. Hylleraas, Vol. 1 and 2. John Midtdal, Knut Thalberg, and Harald Wergeland, eds. 445 pp. NTH Press, Trondheim, Norway, 1968.

Dynamics of Mechanical and Electromechanical Systems. Stephen H. Crandall, ed. 466 pp. McGraw-Hill, New York, 1968. \$13.50

Variational Principles in Dynamics and Quantum Theory. By Wolfgang Yourgrau and Stanley Mandelstam. 201 pp. W. B. Saunders, Philadelphia, Pa., 1968. \$6.50

Computing Methods for Scientists and Engineers. By L. Fox and D. F. Mayers. 255 pp. Oxford University Press, New York, 1968. \$6.25

INSTRUMENTATION AND TECHNIQUES

Microwave Power Engineering, Vol. 1: Generation, Transmission, Rectification. Ernest C. Okress, ed. 354 pp. Academic Press, New York, 1968. \$17.00

Microwave Power Engineering, Vol. 2: Applications. Ernest C. Okress, ed. 414 pp. Academic Press, New York, 1968. \$17.00

Basic Concepts of Measurement. By Brian Ellis. 219 pp. Cambridge Univ. Press, New York, 1968. \$2.45

Low-Noise Microwave Amplifiers. IEE Monograph Series 2. H. N. Daglish, J. G. Armstrong, J. C. Walling, C. A. P. Foxell, eds. Cambridge Univ. Press, New York, 1968. \$7.50

Time-Sharing Computer Systems. By M. V. Wilkes. 102 pp. American Elsevier, New York, 1968. \$4.95

National Accelerator Laboratory Design Report. F. T. Cole, Robert Rathbun Wilson, Edwin L. Goldwasser, eds. United States Atomic Energy Commission, Washington, DC, 1968. \$3.00

Handbook of Vacuum Physics, Vol. 2: Physical Electronics, Parts 4, 5, and 6. A. H. Beck, ed. 598 pp. Pergamon Press, New York, 1968. \$8.50

Handbook of Techniques in High-Pressure Research and Engineering. (Trans. from Russian). By Daniil S. Tsiklis. 504 pp. Plenum Press, New York, 1968. \$35.00

Electronic Image Storage. B. Kazan and M. Knoll, eds. 498 pp. Academic Press, New York, 1968. \$19.50

Seismic Methods for Monitoring Underground Explosions. David Davies, rapporteur. 130 pp. SIPRI International Institute for Peace and Conflict Research, Stockholm, Sweden, 1968. \$2.50

Materials of High Vacuum Technology, Vol. 3: Auxiliary Materials. By Werner Espe. 530 pp. Pergamon Press Ltd., New York, 1968. \$40.00

An Introduction to Physical Electronics. By A. H. W. Beck and H. Ahmed. 360 pp. American Elsevier, New York, 1968. \$11.75

Adhesive Bonding: Techniques and Ap-

LOCK IN simplified retrieval of noise buried signals with Ithaco's 353 Phase-Lock amplifier

- no tuning required
 phase and gain not affected by adjustment or drift in reference frequency
- adapts automatically to virtually any reference input
- ultra stable, highly linear detector—no overload at 1,000 : 1 noise to signal ratio
- 1.0 Hz to 200 KHz operation

 plug-in construction permits addition of new or specialized features—prevents obsolescence

For further information and complete specifications contact:

413 TAUGHANNOCK BLVD., ITHACA, N.Y. 14850

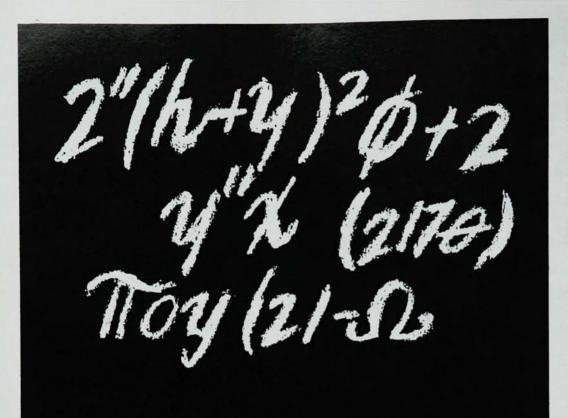
Unusual Opportunity For

PHYSICISTS

TO PARTICIPATE IN A NEW GRADUATE LEVEL WORK-STUDY PROGRAM

Indiana State University and the U. S. Naval Ammunition Depot, Crane, Indiana, have established a new Graduate Professional Practice Program in Physics leading to a Master of Arts or Master of Science degree. Students will spend alternate semesters (including summer terms) on campus at Terre Haute and working at Crane as Civil Service employees.

Students accepted into this program must have an appropriate bachelor's degree at the time they enter the program. They may receive free tuition, except for \$95 per semester-hour, and a stipend of \$900-\$1250 per semester while at Indiana State. Students will earn approximately \$170 per week while employed at NAD, Crane.


The ISU Department of Physics has a well-developed master's degree program. Advanced courses offered include solid state, physics of materials, non-destructive testing, thermodynamics and statistical

physics, advanced mechanics, nuclear physics, electromagnetic theory, astro-physics, failure of materials, corrosion optics, quantum mechanics, mathematical physics and biophysics.

U. S. Naval Ammunition Depot at Crane is located in central southern Indiana about 70 miles southeast of Terre Haute. Students will be assigned to either the Quality Evaluation Department or the Research and Development Department where work projects will be structures to provide relevant, challenging assignments for the graduate student.

Interested applicants who meet the educational qualifications are encouraged to contact Dr. Harold Hughes, Chairman, Department of Physics, Room 116, Science Building, Indiana State University, Terre Haute, Indiana 47809, for additional information and application specifics.

An Equal Opportunity Employer

Will this formula have an effect on science? Unfortunately no-it's fiction. If it were real, the Navy would have evolved it first. But the Navy deals with fact, not fiction. And the facts are important! lead with Important to your choice of a professional facility at which to work. the

The Naval Laboratories of the East Coast offer leadership career opportunities which are rarely of naval duplicated elsewhere to scientists and engineers. The employment advisor at any of science and the listed Laboratories will be happy to tell technology you more about Navy opportunities. Why not write to him now!

NAVAL LABORATORIES OF THE EAST COAST

NAVAL OCEANOGRAPHIC OFFICE, WASHING-

NAVAL OCEANOGRAPHIC OFFICE, WASHING-TON, D.C. 20390

Long-range research, Oceanographic, hydro-graphic, geophysical and geodetic surveys. Bathymetry, oceanographic instrumentation, data analysis and evaluation. Mapping chart-ing and other programs of national and international importance.

AL ORDNANCE LABORATORY, WHITE MARYLAND 20910

OAK, MARYLAND 20910
Research and development in undersea warfare. Is Navy's principal aero ballistic
activity. Development of air and surface
weapons. Broad research programs in explosives, electrochemistry, polymers, magnetism, acoustics, materials, nuclear phenomena.

NAVY UNDERWATER SOUND LABORATORY, FORT TRUMBULL, NEW LONDON, CONN. 06320

Perform research, development, test and evaluation in surface and underseas surveil-Tance, submarine communications, classifi-cation, oceanography and related fields of science and engineering.

NAVAL APPLIED SCIENCE LABORATORY, FLUSHING AND WASHINGTON AVENUE, FLUSHING AND WAS BROOKLYN, N.Y. 11251

enountin, N.T. 11251
Research, development, test and evaluation in materials, electronics, navigation systems, chemical and biological warfare defense, and related fields of science and engineering.

NAVAL SHIP RESEARCH & DEVELOPMENT CENTER, WASHINGTON, D.C. 20007

NAVAL SHIP RESEARCH & DEVELOPMENT CENTER, CARDEROCK, MARYLAND (Mailtenien, Canderdor, Manticano (Mail-ing address: Washington, D.C. 20007) Research in leading Laboratories—Hydro-mechanics, Aerodynamics, Structural Me-chanics, Acoustics and Vibration, Applied Mathematics (computer technology) for advanced ship and naval aircraft design. to support its systems development in new concepts including surface effect ships hydrofolls, deep dive.

NAVAL SHIP RESEARCH & DEVELOPMENT CENTER, ANNAPOLIS DIVISION, ANNA-POLIS, MARYLAND 21402 Principal areas of research are: propulsion,

power generation, auxiliary machinery, control systems, construction materials, submarine safety, and ship silencing.

NAVAL MINE DEFENSE LABORATORY OF NAVAL SHIP RESEARCH & DEVELOPMENT CENTER, PANAMA CITY, FLA. 32402

A mission-oriented center located on the Gulf Coast of Florida conducting programs of warfare analysis, research, and development, as well as fleet support in the areas of mine defense, acoustic and torpedo countermeasures, manned underwater systems, and inshore warfare. NAVAL RESEARCH LABORATORY, WASHING-

TON, D.C. 20390
The Navy's corporate laboratory engaged in research embracing practically all branches of physical and engineering science, ranging from basic investigation of fundamental problems to applied research and development, directed toward new and improved materials, equipment, techniques and sysmaterials, equipme tems for the Navy

NAVAL ORDNANCE STATION, INDIAN HEAD, MARYLAND 20640
Develops Navy's technical competence in missile, gun and nocket propellants. Conducts Research and Development in chemistry, propellant processing, performs production engineering and pilot plant operations in solid and liquid propellants and evolutions. propellants and explosives.

NAVAL AIR DEVELOPMENT CENTER, JOHNS-VILLE, WARMINSTER, PA. 18974 As the Navy's principal agency for research and development for Aerospace Systems. and development for Aerospace Systems, including Altropre Anti-submarine Warfare Systems, NADC conducts research, design, development, test and evaluation of aeronautical systems and components and performs research and development in aerospace medicine. NAVAL AIR ENGINEERING CENTER, PHILA-

DELPHIA, PA. 19112 Conduct research and development of launching and recover equipment for carrier aircraft; application of the launching and recovery concepts of land-based airfields; research programs in carrier deck lighting and visual landing aids; and developmissile handling techniques and missile ship compatibility. compatibility

NAVAL UNDERWATER WEAPONS RESEARCH AND ENGINEERING STATION, NEWPORT, R.I. 02840

N.1. 0240
Underwater systems research and development. Deep depth weapon pioneers. Fleet support ashore and afloat to assure combat readiness. Independent exploration in acoustics, ASW counter-countermeasures and torpedo trajectory control. Concept and feasibility investigations.

NAVAL WEAPONS LABORATORY, DAHLGREN, VIRGINIA 22448
A leader in research and engineering of weapons and systems to enhance the fire power of the surface fleet. Also, conducts comprehensive warfare analysis and pioneers advance concepts, including novel applications of electro-magnetic and geo-ballistics sciences in haval operations.

Fact-The facilities and equipment of the Naval Laboratories of the East Coast are unsurpassed. Every lab not only is completely up to date, but each also has highly specialized equipment pertinent to its mission. One lab has one of the world's largest high-field magnetic installations. Another has the highest-speed deep water basin for testing everything from hull design for ice breakers to hydrofoils. Other unique facilities are: a high level radiation lab; highly sensitive radio telescope stations: very sophisticated oceanographic vessels: electromagnetic environment simulation facilities: an anechoic test facility.

Fact-Graduate education opportunities at the Naval Labs are almost limitless. Each lab has a program for graduate training right at the facility. Advanced courses are offered in association with the graduate schools of nearby universities. Scientists and engineers take full advantage of these coursesnearly one-third of all the lab's professional people are enrolled in advanced studies at all times. The Navy is strongly supporting this education effort. Another facet is the long range education program which provides for selected employees a year's study on a university campus, tuition and expenses paid, with income still provided by the Navy.

Fact-Each Laboratory has its own coterie of experts, well recognized in their fields by scientific and professional societies whose papers are regularly published. Lab professionals hold hundreds of patents. One of the advantages to being at one of the Labs is the opportunity to work with eminent professionals in fields like: fluid mechanics; underwater propulsion; space and missile surveillance; scale damage modeling; high pressure effects on materials; sonar and hydro mechanics. Every scientist and engineer working at a Naval Lab has the opportunity to meet with and discuss the work of men breaking new ground in fields like these.

> An Equal Opportunity Employer

plications. By Charles V. Cagle. 351 pp. McGraw-Hill, New York, 1968. \$16.00

HEAT, THERMODYNAMICS, STATISTICAL PHYSICS

Thermodynamic Tables in SI (Metric) Units (Système International d'Unités). By R. W. Haywood. 41 pp. Cambridge Univ. Press, New York and London, 1968. \$1.95

Precision Measurement and Calibration, Vol. 2: Selected NBS Papers on Temperature. NBS Special Publication 300. J. F. Swindells, ed. 513 pp. National Bureau of Standards, Washington, DC, 1968. \$4.75

HISTORY AND PHILOSOPHY

Einsteins Vision. (In German). By John A. Wheeler. 108 pp. Springer-Verlag, New York, 1968. \$4.95

The Royal Art of Alchemy. By Reinhard Federmann. Chilton Book Co., New York, 1968. \$8.95

SCIENCE AND SOCIETY

Research and Development in Industry, 1966. NSF 68-20. Kenneth Sanow, Thomas J. Hogan, Marian Palmer, John Chirichiello, eds. 134 pp. National Science Foundation, Washington, DC, 1968. \$1.25

TEXTBOOKS

Experiments in Physical Science, 2nd edition. Ellen D. Weaver and James F. Glenn, eds. 286 pp. Wm. C. Brown Publishers, Dubuque, Iowa, 1968. \$4.95 Programmed Manual of College Physics. By Jay Orear. 241 pp. John Wiley, New York, 1968. \$4.95

Laboratory and Mathematics Supplement to Introduction to Natural Science, Part 1: The Physical Sciences. V. L. Parsegian, Alan S. Meltzer, Abraham S. Luchins, K. Scott Kinerson, Edith Luchins, eds. 205 pp. Academic Press, New York, 1968. \$3.95

Teacher's Guide to Introduction to Natural Science, Part 1: The Physical Sciences. By V. Lawrence Parsegian. 195 pp. Academic Press, New York, 1968. Free

POPULARIZATION

Transportations in the World of the Future. By Hal Hellman. 187 pp. M. Evans & Co., New York, 1968. \$4.95

MISCELLANY

Reports on Progress in Physics, Vol. XXXI, Part 1. C. I. Pedersen, exec. ed. 417 pp. The Institute of Physics and the Physical Society, London, 1968. £615s (£22s to members)

Oil and Water: The Torrey Canyon Disaster. By Edward Cowan. 241 pp. J. B. Lippincott, Pennsylvania, 1968. \$6.95 □

THERMOELECTRIC

Completely interchangeable tube sockets permit endwindow PM tube-type and custom-dynode networks to be used with any of these PFR cooling chambers. The new TE-109 accepts popular side & dormer-window types. All permit low light-level detection with maximum dark current reduction.

Continuous cooling and automatic temperature-stabilizer circuitry (TE-102 TS) permits remote station operation. The water-cooled TE-104 is ideal for lab use; and the dry-ice unit at right (TE-200) loads from top, eliminating need for disassembly when adding coolant. All PFR chambers permit continuous, gain-stable, frost-free operation.

Products for Research has standard and custom chambers for virtually every PM tube operation — cooled and uncooled. Complete specifications and prices sent on request.

Products for Research, Inc.

57 North Putnam Street Danvers, Massachusetts (617) 774-3250

See us at 17th Annual Physics Show New York Hilton, Booth No. 156

WHY WASTE 3,839,800* gallons of water yearly?

HX-50

Capacity: 1.4 KVA Flow: 8 gpm (max) Pressure: 20 psi max Temp. Control: ± 0.3°C

If you use tap water to cool EPR and NMR magnets, electrophoresis units or other heat producing equipment, you can waste almost 4 million gallons of water a year! You can also suffer from temperature and pressure instability, clogged filters, water shut off and other problems.

A Neslab HX series Refrigerated Recirculating Heat Exchanger will operate with less effort and considerable increase in the reproducibility of results. It saves plenty of water, too...a mighty important consideration in this era of water shortages.

We offer several models with cooling capacities from 1.4 to 10 KVA and a variety of output pressures and temperature controls. Priced from \$900.

*Based on 8 gpm 24 hr. operation

NESLAB Instruments, Inc.

Temperature Controlled Systems

871 Islington St., Portsmouth, N.H. 03801