### LETTERS

### Losses to society

Although I have always admired your editorial comment for its breadth of vision and indeed its humanity, I must take exception to your remarks in the June issue concerning the current unemployment among physics PhDs. I can understand your irritation at suggestions made by some of these people that society owes them a living, but I doubt if these complaints are typical, and in any case, even if the unemployed were to misdirect their criticism, this misdirection would not mean that the blame for their unfortunate predicament was theirs alone. Thus, although I agree that society at large has more pressing concerns, I do suggest that a large measure of responsibility falls on the shoulders of the academic physics community.

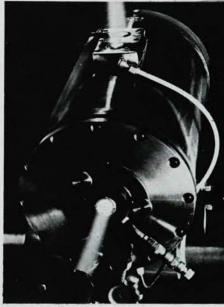
Briefly, I claim that the graduate schools have no business turning out more PhDs than can reasonably be expected to find academic or other research employment (allowing, naturally, for the usual number of dropouts and voluntary transfers to other fields). Of course new PhDs "are equipped to do other jobs" of value to society. The point is that they were equipped for this five or so years ago and would have taken these jobs at that time if that is what they had wanted. As it is, feeling understandably frustrated, they will presumably give less of themselves in these jobs now than they would have done originally. There are two other losses which society suffers through the undiscriminating admissions policy of graduate schools: the service of these students during the period in which they were working for their (useless) PhDs, and the tax money spent in producing an unemployable elite.

And together with the loss to society must be considered the great personal distress of the individuals concerned. It is not simply a question of winding up with \$8 000 a year rather than \$14 000. Especially towards the end of one's PhD work a fairly intimate collaboration develops between student and research director. As the two sweat out their problems together, discuss them with other physicists, share the same moments of frustration and

satisfaction and travel together to physics meetings, the student is led by his professor into the circle to which he aspires, namely, the world of physics research. At any point the association can be terminated, should the student prove inadequate, but if awarding a PhD means anything at all, it must surely be regarded as a certificate of admission to this circle, at least to the point of a few probationary years. Although there can be no question of this admission constituting a formal contract, the new PhD who finds himself rejected from this community at the very moment of acceptance must surely feel cruelly betraved. Obtaining his degree has required not only several years of financially unrewarding hard work but also a considerable emotional dedication to physics in general and his field in particular.

Confronted with this situation, your "oldtime answer . . . physics is tough . . . . If you want to work with us despite the drawbacks we will let you" is a cynical irrelevancy. For the point is that however good the student is, we will only let him work with us up to the completion of his PhD. After that he can take his chance on the market.

Probably my picture of the personal relationships involved between student and professor is somewhat idealized, but only insofar as graduate students have come to be regarded as slave labor, engaged only to serve the ambitions of expanding departments and the careers of individual professors. Therein, of course, lies the rub. As long as there were jobs, no conflict of interest arose and everyone was happy, but in this new situation the only honest thing to do is to reduce the output of PhDs, either by reducing the intake of graduate students or by raising the requirements. (The latter solution could take the form of demanding a certain measure of competence and experience in teaching, which would be suitably remunerated.) If whatever solution is adopted involves a cutback in research so be it: The loss is not likely to be irreparable.


In asserting that the physics community has no right to award the degree of PhD to those whom it cannot

### MEW

MODEL 1000A

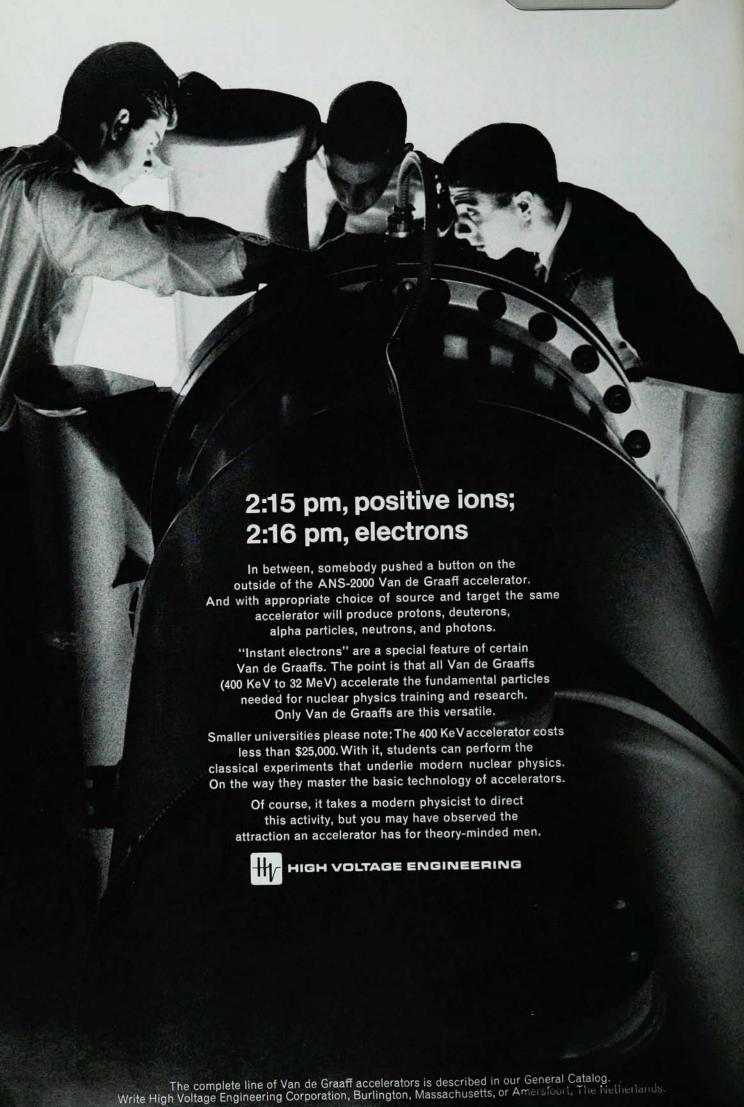
## 2700°C

# \$4475



Astro's new MODEL 1000A ULTRA-HIGH TEMPERATURE FURNACE is designed for general lab use with inert, oxidizing or reducing atmospheres, or vacuum—and features a 2.4 inch diameter by 6 inch long hot zone with a heat-up time of 20 minutes to 2700° C.

Compact for bench use, and suitable for either vertical or horizontal operation, the furnace may be loaded from either end and is provided with radial and axial ports. Available with automatic temperature control, muffle tubes, dilatometers, calorimeters, black body cavities and other accessories.


Astro offers a wide variety of high temperature furnaces—standard, or custom engineered to your requirements. Chances are you will like Astro's combination of quality, price and fast delivery.

## astro

INDUSTRIES, INC.

606 Olive Street Santa Barbara, California 93101 Telephone 805/963-3461

Representatives in all major areas





#### Complete Nuclear Physics Teaching Laboratory

At last! An accelerator-based teaching system for less than \$50,000. A lot less if you already have some of the electronics.

By system, we mean first, the equipment: a 400 KeV Van de Graaff accelerator, vacuum equipment, magnet, scattering chamber, detectors, radioactive sources, support electronics, pulse height analyzer, and radiation monitor.

Second, our teaching manual; 30 graded experiments in nuclear physics, explained step by step, enough to fill a 3-semester laboratory course. By then the student will have performed the fundamental experiments of nuclear physics and encountered a great deal of quantum mechanics, atomic physics, and solid state physics.

Research? Yes. In nuclear physics, solid state physics, atomic physics, and activation analysis. The magnet provides for additional research stations where your staff and graduate students can do original work.

It's everything a teaching/research system should be: simple to

operate, virtually maintenance-free, easily modified for different experiments, low initial cost, expandable with optional equipment.



Our booklet, "The Van de Graaff Nuclear Physics Teaching Laboratory," shows just how this equipment and course book combine theory and praclice in the modern physics curriculum. We'll be glad to send it to you.

| we II D | e glad to send it to you.                        |
|---------|--------------------------------------------------|
|         | IGH VOLTAGE ENGINEERING irlington, Massachusetts |
| Name    |                                                  |
| Positio | n                                                |
| Organi  | zation                                           |
| Addres  | 5                                                |
|         |                                                  |
|         |                                                  |

employ itself, I would certainly not hold this to be true for the bachelor or master degrees. On the contrary, the programs for these courses have been far too strongly oriented towards the student who will eventually go into research. Physics is an excellent training for the mind, and it is one of the scandals of our time that men in public life are, for the most part, scientifically illiterate. Physics departments have been sadly derelict in failing to develop rigorous undergraduate programs for those who will eventually do something else: nomics, law, sociology, politics, etc. But once a man goes as far as the PhD in physics, it must be assumed that this is what he wants to do.

> J. MICHAEL PEARSON Université de Montréal

### Unethical promise of jobs

William Silvert writes of (1) an "employment crisis," and (2) of a crisis ... far deeper and more bitter than a matter of jobs (PHYSICS TODAY, August, page 9).

Regarding the employment crisis, it is hardly reasonable to expect any course of study to lead surely to well paid permanent employment. No institution can properly hold out such a promise to its students unless it has the power to enforce it. Lacking this power, such a promise is unethical. Unemployment is common among actors, playwrights, musicians, poets and composers, but they did not expect their studies to guarantee jobs. They studied for the love of the subject.

Beginning about 1950, many public statements appeared that alleged a "shortage" of scientific personnel-at first, mainly of engineers. This publicity began at about the time that the defense contracting business started to grow rapidly, on a cost-plus-fixed-fee basis. One writer suggested that such contractors made profits on the mere buying and selling of technical labor, the customer being the government. This has not been proved and is not provable, but it is a fair hypothesis. The allegations of a "shortage" were shown to be poorly justified, at best, as long ago as 1957, when the National Bureau of Economic Research published its book-length study, The Demand and Supply of Scientific Personnel. It is surprising that any highly skilled group, such as physicists,

should still believe official statements from any source as to the demand for its services, instead of drawing its conclusions independently from factual sources.

Silvert's second remark suggests deep and widespread disillusionment. But it fails to advance reasons for this second "crisis." In so failing, it becomes unscientific. This crisis clearly exists, but it is a symptom. The disease seems to be hidden. This disease is probably rooted in practices in industry and politics. Nobody seems to know what they are.

Students, at least, are in a position to search for the underlying disease, and to try to explain it. I hope that they will do so instead of merely reacting to pronouncements from still other sources. Persons in responsible positions are likely to be under pressure to protect and extend these positions as we all know, and so students may properly question their motives. What appears to be needed is the clear application of the human brain to the political problems that beset young physicists. They, able to think clearly, will always do better than specialists in the more pseudo sciences.

Lawrence Fleming Pasadena, California

#### Manpower contradictions

In your August issue there is an apparent contradiction between the letters of William Silvert and the reply of Susanne Ellis, on the one hand, and the reply by Hugh Wolfe to Robert C. Johnson's letter on the other. The first letters complain about lack of positions for physicists. Wolfe complains of staff losses and difficulties in recruiting competent people. I have also heard that the National Accelerator Laboratory encounters recruiting problems.

The resolution of the contradiction might well lie in the areas of work for which young physicists strive and the editorial work that the American Institute of Physics can offer. However, it would be good to have a more detailed review of positions available and positions sought by applicants for jobs.

I know from first-hand information that many of the smaller colleges are eager to find good physics teachers, and I think there are also some job openings in national laboratories. On the other hand, I also know of some young physicists who had considerable difficulty in locating positions to their liking even though, in the cases about