SEARCH AND DISCOVERY

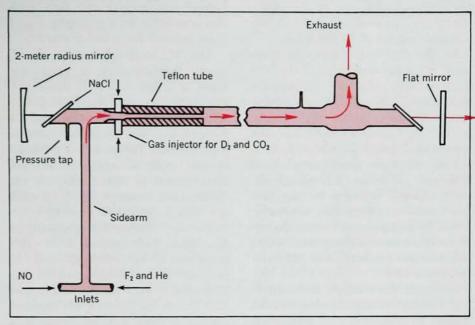
Continuous-Wave Chemical Laser Requires No External Energy Source

Terrill A. Cool and Ronald R. Stephens1 of Cornell University believe they have produced the first continuous wave all-chemical laser. In a paper he delivered 26 Nov. at the American Physical Society fluid dynamics division meeting in Norman, Oklahoma, Cool told how they mixed commercially available bottled gases to get 1.06 × 104 nanometer emission from carbon dioxide without any external energy source to initiate or sustain lasing action. Maximal power output was 8 watts; lasing continues until the reactants are depleted (up to several hours). The laser operates at about 4% efficiency; Cool predicts 15% efficiency with proper design modifications. A typical electrically excited CO2 laser has an overall efficiency of about 8%.

Cool's mechanism for chemical pumping of CO2 involves a fluorinehelium mixture, deuterium and nitricoxide gases as well as CO2. To obtain fluorine atoms F2 and NO are

mixed:2

$$F_2 + NO \rightarrow NOF + F$$


The flowing gas, which now contains both F and F2, is mixed with deuterium to produce vibrationally excited fluoride chain deuterium in a reaction3

$$F + D_2 \rightarrow (DF)^* + D$$

 $D + F_2 \rightarrow (DF)^* + F$

The deuterium fluoride then transfers vibrational-rotational energy to CO2, pumping the CO2 to the upper laser level3,4,5 from which it emits 1.06 X 104-nm radiation.

The reaction vessel is similar to one used previously by Cool, Stephens and Theodore J. Falk. F2 and NO are mixed in an 11-mm bore quartz sidearm; deuterium and carbon dioxide are injected at the upstream end of a 9-mm bore Teflon tube. The reaction time in this high-speed (600 m/sec) flow is extremely rapid (100-200 microsec); Cool believes that most of the laser output is from this portion of the flow (see figure).

The Cornell results have shown that a practical flow system is possible.

CONTINUOUS-WAVE ALL-CHEMICAL LASER. Arrows show paths of reacting gases. Lasing action occurs mainly in upstream portion of tube.

Because their system operates through a collision mechanism and, unlike some other chemical-laser systems, is not limited to a maximal size, the Cornell group believes it could be developed into a high-power laser. A continuous-wave chemical laser of this type might be used in space.

Chemical lasers were first developed by George C. Pimentel and Jerome V. Kasper⁶ at the University of California, Berkeley. The Berkeley group, says Pimentel, has been using pulsed chemical lasers to investigate the role of vibrational and rotational energy states in chemical-reaction dynamics. Other groups1,7 have reported continuous chemically pumped

lasers, but until now an external energy source has been required.

References

- 1. T. A. Cool, R. R. Stephens, J. Chem. Phys. (to be published).
- 2. H. S. Johnston, H. J. Bertin Jr, J. Am. Chem. Soc., 81, 6402 (1959).
- 3. T. A. Cool, T. J. Falk, R. R. Stephens, Appl. Phys. Lett. (to be published).
- 4. R. W. F. Gross, J. Chem. Phys. 50, 1889 (1969).
- 5. H. L. Chen, J. C. Stephenson, C. B. Moore, Chem. Phys. Lett. 2, 593 (1968).
- 6. J. V. Kasper, G. C. Pimentel, Phys. Rev. Lett. 14, 352 (1965).
- D. J. Spencer, T. A. Jacobs, H. Mir-els, R. W. F. Gross, Internat. J. Chem. Kin. (to be published).

Cold Octopole and Hot Tokomak Show Long Confinement Times

Two results reported at the Dubna International Symposium on Closed Confinement Systems have excited fusion physicists. The high temperature and long confinement time that Lev Artsimovich observed with Tokomak (PHYSICS TODAY, June, page 54) have been confirmed by a visiting British team, and with the Gulf General Atomic multipole Tihiro Ohkawa observed very long confinement times. In further experiments (which Ohkawa reported at the November meeting of the APS plasma-physics division in Los Angeles) Ohkawa observed classical diffusion in a dilute cold plasma. His collaborators were Masaji Yoshikawa, Robert Kribel and A. A. Schupp.

Ohkawa used an octopole, which

consists of four internal rings carrying parallel currents in the toroidal direction. Just like all multipoles, the device has axial symmetry about the major axis of the torus. Ohkawa designed the device to reduce losses to the ring supports, one of the major limitations in earlier octopoles; it has a plasma volume of 10 000 liters.

In the first experiments Ohkawa used a plasma density of 3 × 10¹⁰ particles/cm³; electron temperature was about 5 eV. In the new experiments Ohkawa pushed the density higher (10¹¹ particles/cm³) and the temperature lower (a few eV), to a regime where one should get classical diffusion. Ohkawa did indeed observe classical diffusion for the first 150 millisec; then the behavior smoothly changed and became Bohmlike. His measured decay time of 200 millisec corresponds to about 300 times the Bohm value.

Although the octopole confinement is the longest observed in any toroidal device, its plasma is cold and dilute and not likely to be scaled up into a reactor because of the interior rings. (General Atomic plans to build a Doublet device, in which internal conductors are replaced by plasma current.) However, because the octopole plasma is well contained one might now try to understand what effects are responsible for the enhanced confinement and then apply the knowledge to a geometry that is more suitable for a fusion reactor.

The Tokomak plasma is already nearly thermonuclear; it gives neutrons, it is hot and it is dense. At Dubna N.J. Peacock and D. C. Robinson of Culham Laboratory and N. Sammikov of the Kurchatov Institute reported that Tokomak T-3 produced in one mode of operation electron temperatures of 900 ± 100 eV and confinement times of about 25 millisec with a density of 2×10^{13} particles/cm3. Earlier measurements by Kurchatov had yielded 3 × 1013 particles/cm3 at 1000 eV and 20 millisec. The Culham-Kurchatov collaboration determined temperature and density by analysis of Thomson scattering from a pulsed ruby-laser beam.

Air Force Solar Telescope and OSO-6 Now Observing the Sun

Two new devices are now observing the sun—a solar vacuum-tower telescope built by Air Force Cambridge Research Laboratories and OSO (Orbiting Solar Observatory)-6.

The solar telescope is 111 meters

AIR FORCE SOLAR TELESCOPE is 111 meters high. The optical system is evacuated to 0.250 torr.

high and has a central core that contains the entire optical system, which is evacuated to 0.250 torr. Light enters through a 76-cm aperture, passes through a quartz window and is then reflected by two flat mirrors to the 64-inch (1.62-meter) focusing mirror (focal length 55 meters) at the bottom of the shaft. Theoretical resolving power is 0.2 sec of arc; so one can expect to resolve fine details on the solar disc.

Because the objective port is high above most air turbulence and heat currents that swirl up when the sun heats the ground, and because the optical system is evacuated, image stability is expected to be excellent. Richard B. Dunn designed the system.

Located in the Sacramento Mountains of New Mexico, the \$3.3-million instrument will be used to study solar centers of activity—sunspots, magnetic fields, flares and plage areas. One goal is identification of precursors to solar flares.

OSO-6 is returning data from seven experiments. From its vantage point above the atmosphere, it can study in detail the ultraviolet and x-ray spectra at any point in the solar disc. Its expected lifetime is six months.

IN BRIEF

US and Soviet radio astronomers were to collaborate this fall on the longest baseline ever used for two-telescope interferometry. Telescopes at Green Bank, W. Va., and the Crimean Astrophysical Observatory near the Black Sea—9600 kilometers apart—should provide a resolution of 0.0003 to 0.0005 seconds of arc at a 3-cm wavelength.

Construction has begun on an observatory to house a 40-inch (101-cm) astrometric telescope at the Fan Mountain Observatory of the University of Virginia.

A two-year oceanographic study of the central Mediterranean is taking place. Geophysicists from the Woods Hole Oceanographic Institution, the University of Bologna and the University of Trieste are coöperating in the project and expect to obtain continuous reflection and refraction data from the earth's crust down to the Mohorivicic discontinuity.

Dicke Panel Says US Lags in Radio-Astronomy Construction

The National Science Foundation Ad-Hoc Advisory Panel for Large Radio-Astronomy Facilities, headed by Robert H. Dicke, has decried the lack of US radio-astronomy construction. The panel, originally convened in August 1967 (PHYSICS TODAY, September 1967, page 71), met again to review its original recommendations. In a recently issued report the panel points out that none of the suggestions made two years ago has yet been implemented. The US, it says, has stood still while Germany, India, the Netherlands and the UK have begun construction on large radio telescopes, several of which will soon be in opera-

Noting that discoveries since the panel first met (pulsars, existence of interstellar formaldehyde, ammonia and water) have made construction of new telescopes even more imperative now than two years ago, the panel recommends that:

• the 305-meter spherical-dish telescope at Arecibo, Puerto Rico (PHYSICS TODAY, April, page 65) be resurfaced so that it can be useful for centimeter-wave radio astronomy. Resurfacing was urged two years ago as a relatively inexpensive improvement.

• the Cal Tech proposal for con-