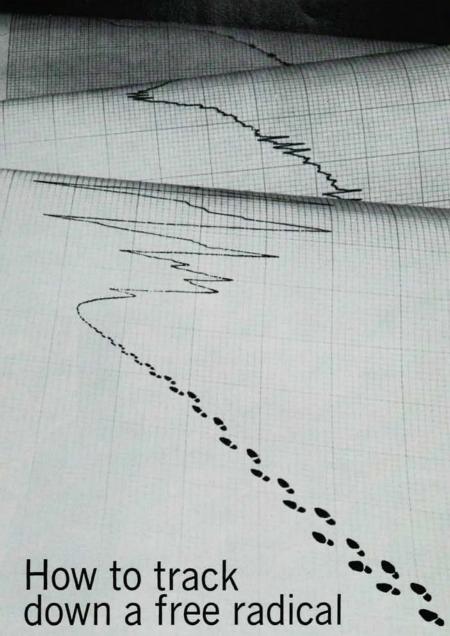
the moon are 8.2×10^6 cm for water and 3.4×10^6 cm for carbon dioxide. These gases thus expand into effective volumes of 3.1×10^{24} cm³ and 1.3×10^{24} cm³, respectively. To within an order of magnitude, the pressure rises to be expected due to ejection of this amount of gas are 2×10^{-13} torr for water and 5×10^{-13} torr for carbon dioxide. Pressures of this magnitude are measurable with commercially available equipment.

Simple estimates of typical escape times for these gases indicate that they will remain for at least several thousand years. We may then expect to modify the total lunar environment irreversibly, and only partly predictably, each time a rocket lands there. Only if the natural background pressures of water and carbon dioxide are several orders of magnitude larger than the above values will our perturbations of these quantities be unimportant.

JOHN O. STONER JR University of Arizona


Emily Wolf and register

I enjoyed the article "The National Register Looks at Manpower" in the October Physics Today. In one statement, though, it is in error.

At the request of Henry A. Barton, then director, and Wallace Waterfall, then as now secretary of the American Institute of Physics, I organized the register in November 1953. I employed Sylvia Barisch, your senior author, in March 1954 as one of my part-time coders. I remained in charge of the register until 1960, when it was transferred to the newly formed Education and Manpower Division. Mrs Barisch had been named supervisor in May 1959.

EMILY WOLF
American Institute of Physics

Correction: The editors apologize for two typographical errors in Don B. Lichtenberg's October review of Paradoxes in the Theory of Relativity by Yakov P. Terletskii. The word "comparable" was substituted in the last sentence, which should have read, "... the theory of relativity is compatible with dialectic materialism." The first equation in the fourth paragraph should have read $\gamma = 1/(1 - u^2/c^2)^{\frac{1}{2}}$.

Capture it on paper with a VENTRON EPR/ESR Spectrometer. You'll have the elusive electron under close scrutiny when other instruments can barely find a trace. VENTRON EPR/ESR systems are completely packaged to suit your particular research requirements for X, K, Ka or V band frequencies. If you're probing into the realm of electron-nuclear interaction, examine VENTRON's Broad Band ENDOR. In a single instrument, it combines high sensitivity, high resolution and an increased range of scanning speeds. Use it confidently to resolve hyperfine structures when the electron spin resonance line is broadened. Wherever your investigations lead you, if they can be solved by electromagnetic systems or instruments, consider the evidence in favor of VENTRON. It includes a background of such names as Strand Labs, Magnion and Harvey-Wells, a commitment to quality that is absolute, and the capabilities for practical application of advanced technology. Why not investigate?

Ventron MAGNION DIVISION

BURLINGTON • MASSACHUSETTS 01803 • TEL: (617) 272-5200