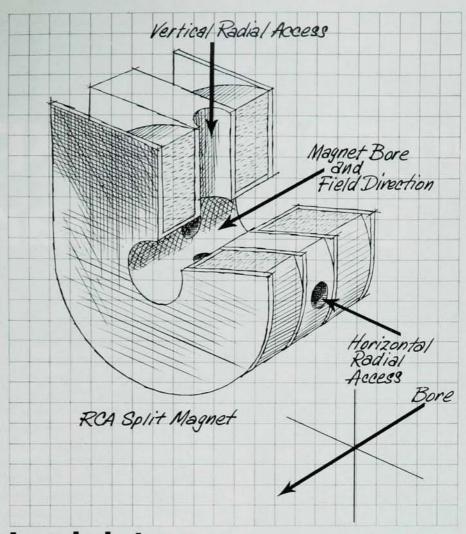
which I know, they eventually succeeded. An article that would resolve the apparently conflicting statements of the letters would, I think, attract considerable interest.

EUGENE P. WIGNER Princeton University

Personal ivory towers

As a physicist turned engineer (by hoice) I could not help commenting n two things in PHYSICS TODAY. First he job shortage for PhDs. It exists ecause some people got the idea the IS owed them a personal ivory wer-equipped with secretaries, echnicians and an unlimited supply of oney. Now the coach has turned to a pumpkin; the horses are mice, and a cold cruel employer asks, "What in you do for the corporation?" I y it is just about time that Alice rerned from Wonderland.

They are excelin Physical Society. They are excelin Try submitting a paper to some
implication of the Ameriin Physical Society. They are excelin the Try submitting a paper to some
implication of the Ameriin Physical Society. They are excelin the Try submitting a paper to some
implication of the Ameriin the Try submitting a paper to some
implication of the Ameriin the Try submitting a paper to some
in the Try submitting a paper to


STUART A. HOENIG University of Arizona

odifying lunar atmosphere

e lunar atmosphere (vacuum) is a ource that has become available to nkind only within the last few rs. It appears likely that studies of dual gas near the moon's surface provide useful information conning the history and composition of t body. It is possible that the on will find important use as a supt for large infrared and ultraviolet scopes, thermionic devices and er apparatus that requires high ium for operation. Perhaps it is thwhile to point out that this envinent may be changed appreciably the process of lunar exploration that in particular some considera should be given to the effects of ction of large amounts of rocket s into that environment.

typical manned landing module it exhaust 5000 pounds of gases, ly water and carbon dioxide in ly equal molar amounts with meaple amounts of heavier hydrocar-

. At a mean temperature of 300 K vertical distances required for 1/e ction of atmospheric pressure on

Look Into
This 100 kG
Split-coil Magnet
for Research

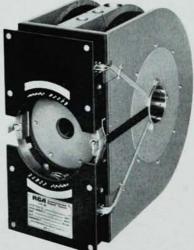
Visit the RCA Booth at 18th Annual Physics Show, Chicago, Jan. 26-28

Visit the RCA Booth at 18th Annual Physics Show, Chicago, Jan. 26-28

· 2.5" horizontal bore

 Four 1 2" optical access ports at right angles to each other

Versatility!

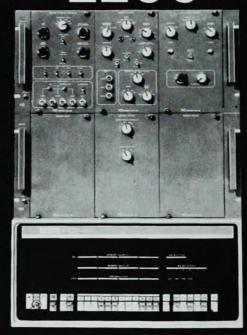

· Uniform 100 kG field

415 South 5th Street

Harrison, N.J. 07029

 Homogeneity to within 0.4% in 1 cm spherical volume

—and the unit can be "tailored" to the exact needs of your project. If your project involves high magnetic fields, your plans should involve RCA. Pick from superconductive magnets with ranges from 20 to 150 kG field, bore sizes from 1" to 20" and homogeneities to within 0.001%/cm. For full information on the range of RCA Superconductive Magnets and matched system components or RCA copper-clad Nb₃Sn ribbons, write: Marketing Manager, RCA Superconductive Products, Section L-159DC



RCA

In case of expansion, call Nuclear Data.

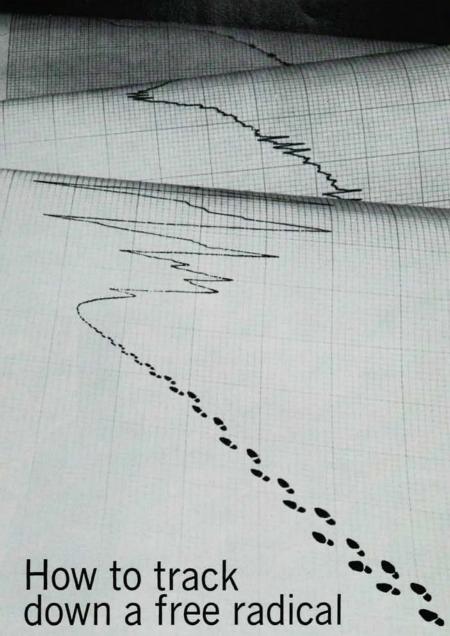
Expansion is what our 2200 pulse height analyzer is all about. How much expansion? All the way to computer interface. First step: select the basic 2200 AEC compatible analyzer. Then expand the system whenever (and however) you require: 512 to 4096 channels, single to dual parameter, multi spectral scaling. Nuclear Data has the hardware, and the software, to keep pace with your expansion program. You might say we have bridged the generation gap.

THE 2200

the moon are 8.2×10^6 cm for water and 3.4×10^6 cm for carbon dioxide. These gases thus expand into effective volumes of 3.1×10^{24} cm³ and 1.3×10^{24} cm³, respectively. To within an order of magnitude, the pressure rises to be expected due to ejection of this amount of gas are 2×10^{-13} torr for water and 5×10^{-13} torr for carbon dioxide. Pressures of this magnitude are measurable with commercially available equipment.

Simple estimates of typical escape times for these gases indicate that they will remain for at least several thousand years. We may then expect to modify the total lunar environment irreversibly, and only partly predictably, each time a rocket lands there. Only if the natural background pressures of water and carbon dioxide are several orders of magnitude larger than the above values will our perturbations of these quantities be unimportant.

JOHN O. STONER JR University of Arizona


Emily Wolf and register

I enjoyed the article "The National Register Looks at Manpower" in the October PHYSICS TODAY. In one statement, though, it is in error.

At the request of Henry A. Barton, then director, and Wallace Waterfall, then as now secretary of the American Institute of Physics, I organized the register in November 1953. I employed Sylvia Barisch, your senior author, in March 1954 as one of my part-time coders. I remained in charge of the register until 1960, when it was transferred to the newly formed Education and Manpower Division. Mrs Barisch had been named supervisor in May 1959.

EMILY WOLF American Institute of Physics

Correction: The editors apologize for two typographical errors in Don B. Lichtenberg's October review of Paradoxes in the Theory of Relativity by Yakov P. Terletskii. The word "comparable" was substituted in the last sentence, which should have read, "... the theory of relativity is compatible with dialectic materialism." The first equation in the fourth paragraph should have read $\gamma = 1/(1 - u^2/c^2)^{\frac{1}{2}}$.

Capture it on paper with a VENTRON EPR/ESR Spectrometer. You'll have the elusive electron under close scrutiny when other instruments can barely find a trace. VENTRON EPR/ESR systems are completely packaged to suit your particular research requirements for X, K, Ka or V band frequencies. If you're probing into the realm of electron-nuclear interaction, examine VENTRON's Broad Band ENDOR. In a single instrument, it combines high sensitivity, high resolution and an increased range of scanning speeds. Use it confidently to resolve hyperfine structures when the electron spin resonance line is broadened. Wherever your investigations lead you, if they can be solved by electromagnetic systems or instruments, consider the evidence in favor of VENTRON. It includes a background of such names as Strand Labs, Magnion and Harvey-Wells, a commitment to quality that is absolute, and the capabilities for practical application of advanced technology. Why not investigate?

Ventron MAGNION DIVISION

BURLINGTON • MASSACHUSETTS 01803 • TEL: (617) 272-5200