state, including the relationship of slow-neutron experiments to those with x rays, the Raman effect and infrared spectroscopy. Crystal properties revealed by phonon and magnon interactions and experimentally determined dispersion relations are examined, but the scattering of neutrons by molecules, especially the significant advances made by H. L. McMurray, G. W. Griffing and others in recent years, deserves much more attention than this book provides.

Even though slow neutrons are of central importance for nuclear reactors the authors make no mention of this relationship. It is true that a separate treatise would be required to do this subject complete justice, but the present volume would be greatly enriched by some consideration of the extensive work on neutron cross sections and the relation of basic neutron physics to the properties of reactor moderators and fuels. Some discussion of neutron dynamics in chain reactors would have enlightened the whole treatment by indicating the relationship of neutron physics to related technology, for example, the mechanism employed in the TRIGA reactor. Up to a point the book gives an adequate and often detailed review of work in low-energy neutron physics.

However, no reference later than 1964 is mentioned and most of the references are to work done much earlier. It also emphasizes Russian research even more than is normally expected in books from that country. The coverage of low-energy neutron work in the US is by no means adequate with the exception of the work at Oak Ridge National Laboratory carried on for many years by E. O. Wollan and his associates. There is only scant mention of the work conducted at the Materials Testing Reactor in Idaho by R. M. Brugger and his coworkers and the most recent experiments carried on at the Brookhaven National Laboratory by R. E. Chrien and his associates.

The theoretical treatments are often not well correlated with the experimental results. A notable example is the Van Hove correlation functions that are formally discussed, yet no explicit example of their relationship to any experimental data is given.

Robert Shankland is Ambrose Swaseu professor of physics at Case Western Reserve University.

The "science of science"

PUBLIC KNOWLEDGE: AN ESSAY CONCERNING THE SOCIAL DIMEN-SION OF SCIENCE. By John M. Zi-154 pp. Cambridge U. Press, London, 1968. Cloth \$3.95, paper \$1.95

by DIANA CRANE

After many years as research scientist and teacher, John Ziman, a British physicist, has set down his ideas about the internal workings of science. He has been stimulated by recent publications on the "science of science," a relatively new field in which models are being developed to explain the growth of science and the social behavior of scientists.

Ziman's thesis is that the goal of science is not knowledge per se but public knowledge, a consensus about what has currently been discovered in any field. He argues that a number of the normative and competitive aspects of scientists' behavior, which have been stressed by sociologists, can only be understood in terms of this goal. This objective also explains other characteristics of the scientific community, such as the high standards of evaluation of scientific work, the refereeing of scientific manuscripts and the existence of review articles, all of which are designed to establish a consensus about scientific knowledge or to state it explicitly.

After a brief discussion of the nature of science and of scientific method, Ziman explores the theme of science as consensus in a number of contexts: the education of the young scientist, communication between colleagues and the scientist's organizational loyalties. His insights into the tensions that develop from the necessity to have certified knowledge and, at the same time, to develop new ideas are especially interesting.

He has chosen to write as an educated layman or amateur philosopher rather than as an expert in the science of science. Although specialists in that field will find interesting insights into the social organization of science, the book would have gained in value if he had elaborated the relationship between his ideas and previous work in the field. The general reader, seeking introduction to an unfamiliar

Atomic Order:

An Introduction to the Philosophy of Microphysics

by Enrico Cantore

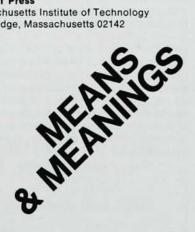
The Intention of Atomic Order is to encourage and contribute to the dialogue between philosophers and scientists by discussing a concrete example of scientific discovery according to a method acceptable and understandable to both sides.

The book consists of two parts. The first part is devoted to the problem of atomic order as discovered and verified by physics, from the speculations of Dalton to the consequences of modern quantum mechanics. These chapters will afford a telescopic, historical review to the scientific reader and a reliable, understandable account of the physical discoveries and theories to the nonscientist. The second part analyzes the presuppositions, guiding principles, and implications that made possible the development of atomic physics and that impart a humanistic meaning to it.

\$12.50

In Honor of Philip M. Morse edited by Herman Feshbach and K. Uno Ingard

When Philip Morse was promoted to Professor Emeritus of Physics at M.I.T. in 1969, he already had behind him at least three full professional careers - in quantum physics, in acoustics, and in what Julius Stratton calls "the reduction of theory to numerically useful results," a general field of which Morse was a founder and for which no good term yet exists, that includes operations research, machine computation, and systems analysis. This volume contains papers in all these fields, written by Dr. Morse's students and colleagues. By their presence here, they gratefully testify to the influence that Philip Morse has had on their work and, in many cases, on their lives. \$20.00


Applications of Group Theory in Quantum Mechanics

by M. I. Petrushen and E. D. Tritanov This book is intended for theoretical physicists with a desire to understand the value of modern group-theoretical methods in quantum theory. The theory of groups and of their matrix representations is fully developed to the level required for applications, and their relevance to the invariance properties of a physical system is established. In particular, the fundamental relation between the irreducible representations of the invariance group of a Hamiltonian and the eigenvalue degeneracy is obtained.

\$12.00

The MIT Press

Massachusetts Institute of Technology Cambridge, Massachusetts 02142

Wiley Physics Texts Continue to Set the Standards Continue to Set the Standards Continue to Set the Standards Continue to Set the Standards

The standards in introductory physics for liberal arts students have been set by many outstanding Wiley texts. Continuing this tradition is CONCEPTUAL PHYSICS: Matter in Motion, by JAE R. BALLIF and WILLIAM E. DIBBLE, both of Brigham Young University. It presents what is really important in modern physics to nonscience students. It explains accurately and without complex mathematics such basic concepts as fundamental particles, quantities, constants, interactions, the principle of relativity, symmetry principles, conservation laws, quantum physics, the uncertainty principle, entropy, and the laws of motion.

1969 637 pages \$9.95

Because standards in physics teaching have a way of constantly improving, successful pacesetters must also be improved. That is one reason there is now a new second edition of THE ELE-MENTS AND STRUCTURE OF THE PHYSICAL SCIENCES, by JULIEN A. RIPLEY, JR., Wilkes College, and R. C. WHITTEN, National Aeronautics and Space Administration. The first edition was praised for being highly readable, thought-provoking, lively, accurate, timely, and particularly strong in presenting physical science as a unified structure. The second edition integrates a new and detailed discussion of atmospheric science, including air pollution; a new chapter on space science and physics; and new sections on lasers, the tides, quasars and pulsars, earthquake waves, and fundamental particles-all within its unified presentation.

1969 Approx. 704 pages \$11.50

The new pace setters in quantum physics are:

INTRODUCTION TO QUANTUM FIELD THEORY, by PAUL ROMAN,

Boston University, which provides a unified treatment of both theoretical ideas and working methods in quantum field theory. The book starts from scratch, stresses basic ideas, and leads to current research topics. The emphasis is on exhibiting the structure of both the theory and of the methods used for computation. The material has been carefully written for clarity and logical structure.

1969 634 pages \$18.00

INTRODUCTORY QUANTUM ME-CHANICS, by KLAUS A. ZIOCK, University of Virginia. This introduction to quantum mechanics for senior physics students stresses application of quantum mechanics to simple but real physical systems of current research interest. It approaches the subject through gedanken experiments that show the breakdown of classical concepts and point the way to the wave mechanical interpretation of quantum mechanics. The early chapters develop the most important general theorems of the operator and matrix description of quantum mechanics. These theorems and general techniques are then applied to simple physical systems such as hydrogen and positronium. 1969 271 pages \$9.95

In programmed material, NUMBERS AND UNITS FOR PHYSICS, A Program for Self-Instruction, by ROBERT A. CARMAN, San Bernardino Valley College, sets a high standard for self-study supplements for elementary physics courses. It offers specific instruction in the quantitative language physics students need-i.e., writing numbers in exponential notation, significant digits, rounding, measurement, dimensions, units, unit conversion, unit systems, and dimensional analysis. Written in a programmed format, the book is especially adaptable to self-study, remedial work, and review. It uses branching and linear programming and conventional exposition, combining the best features of each to produce a highly effective, interesting, and versatile study device.

1969 In press

JOHN WILEY & SONS, Inc. 605 Third Avenue, New York, N.Y. 10016

In Canada: John Wiley & Sons Canada Ltd. Worcester Road, Rexdale, Ontario. subject, will obtain a highly readable overview of its most important problems and some guidance toward further reading in the area.

* * *

Diana Crane is an assistant professor of sociology at Johns Hopkins University. She is engaged in studies of scientific communication and "invisible colleges" of scientists.

NEW BOOKS

ELEMENTARY PARTICLES

Dispersion Theories of Strong Interactions at Low Energy. By D. V. Shirkov, V. V. Serebryakov, V. A. Meshcheryakov. 362 pp. Wiley (North-Holland, Amsterdam) New York, 1969. \$19.50

Effects of Ionospheric Scattering on Very-Long-Distance Radio Communication. By H. A. Whale. 179 pp. Plenum Press, New York, 1969. \$10.00

Modern Quantum Mechanics with Applications to Elementary Particle Physics: An Introduction to Contemporary Physical Thinking. By John A. Eisele. 541 pp. Wiley-Interscience, New York, 1969. \$19.95

NUCLEI

Shell-Model Approach to Nuclear Reactions. By Claude Mahaux, Hans A. Weidenmüller. 347 pp. Wiley (North-Holland, Amsterdam) New York, 1969. \$16.00

ATOMS, MOLECULES, CHEMICAL PHYSICS

Active Nitrogen. By A. Nelson Wright, Carl A. Winkler. 602 pp. Academic Press, New York, 1968. \$27.50

Correlation of Infrared and Raman Spectra of Organic Compounds. By Herman A. Szymanski. 126 pp. Hertillon Press, Cambridge Springs, Penna., 1969. Paper \$2.50

Electronic and Ionic Impact Phenomena (2nd edition): Vol. 1, Collision of Electrons with Atoms. By H. S. W. Massey, E. H. S. Burhop. 684 pp. Oxford U. Press, Oxford, 1969. \$32.00

Ionization, Conductivity and Breakdown in Dielectric Liquids. By Ignacy Adamczewski. 439 pp. Barnes & Noble, New York, 1969. \$27.50

Microwave Spectral Tables, Vol. 3: Polyatomic Molecules With Internal Rotation. By Paul F. Wacker, Marian S. Cord, Donald G. Burkhard, Jean D. Petersen, Raymond F. Kukol. 265 pp. US Department of Commerce, Washington, D. C., 1969. \$4.25

Quantum-Statistical Foundations of Chemical Kinetics. By Sidney Golden. 163 pp. Clarendon Press, Oxford, 1969. Paper \$11.00

Résonances Magnétiques. A. Erbeia, ed. 270 pp. Masson et C^{1*}, Paris, 1969.

ACOUSTICS

Ultrasonics: Theory and Application. By G. L. Gooberman. 210 pp. Hart Publishing, New York, 1969. \$12.00

OPTICS

Elementary Wave Optics. By Robert H. Webb. 268 pp. Academic Press, New York, 1969. \$11.50

Essentials of Lasers. By L. Allen. 233 pp. Pergamon Press, Oxford, 1969. Cloth \$7.00; paper \$5.50

Focus on Physics: Optics 1; Lenses, Mirrors, and Optical Instruments. By J. Warren Blaker. 112 pp. Barnes & Noble, New York, 1969. Paper \$1.25

Gas Laser Technology. By Douglas C. Sinclair, W. Earl Bell. 161 pp. Holt, Rinehart and Winston, New York, 1969. \$7.00

Lasers and Light. Readings from "Scientific American." 376 pp. W. H. Freeman, San Francisco, Calif., 1969. Cloth \$10.00, paper \$5.95

FLUIDS, PLASMAS

Annual Review of Fluid Mechanics, Vol. 1. William R. Sears, Milton Van Dyke, eds. 459 pp. Annual Reviews, Palo Alto, Calif., 1969. \$8.50

Plasma Technology. By B. Gross, B. Gryca, K. Miklóssy. Translated by R. C. G. Leckey. 487 pp. American Elsevier, New York, 1969. \$17.00

Significant Liquid Structures. By Henry Eyring, Mu Shik Jhon. 149 pp. Wiley, New York, 1969. \$9.95

Transport Phenomena in Fluids. Howard J. M. Hanley, ed. 509 pp. Marcel Dekker, New York, 1969. \$25.50

Viscous Drag Reduction. C. Sinclair Wells, ed. 500 pp. Plenum, New York, 1969. \$22.50

SOLIDS

Crystals and Their Structures. By Arthur P. Cracknell. 231 pp. Pergamon Press, Oxford, 1969. Cloth \$7.00, paper \$5.50

Fission Damage in Crystals. By Lewis T. Chadderton, Ian McC. Torrens. 265 pp. Methuen, London, 1969. \$13.50

Group Theory and Electronic Energy Bands in Solids. By J. F. Cornwell. 288 pp. Wiley (North-Holland, Amsterdam) New York, 1969. \$17.95

Introduction to Crystallography. By Donald E. Sands. 165 pp. W. A. Benjamin, New York, 1969. Cloth \$12.50; paper \$4.95

INSTRUMENTATION AND TECHNIQUES

The Technology of Computer Music. By M. V. Mathews. 188 pp. MIT Press, Cambridge, Mass., 1969. \$12.00

La Radiographie Eclair. By L. Beaudouin. 220 pp. Presses Universitaires de France, Paris, 1968.

Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 4. J. W. Emsley, J. Feeney and L. H. Sutcliffe, eds. 467 pp. Pergamon, New York, 1969. \$18.00

International Series of Monographs on

PHYSICS LITERATURE

A Reference Manual— Second Edition

By ROBERT H. WHITFORD

Cited in WINCHELL (EG2)

272 pages LC: 68-12636 \$8.50

This is a survey of physics literature at the college level. It describes the many types and forms available, selects a representative working collection, and outlines efficient library methods. Arrangement is by most usual lines of inquiry. Background materials have been interspersed for greater interest and information. Some of the criteria for inclusion:

- ... Is it a useful bibliographical tool?
- ...Is it a comprehensive reference work?
- ...Does it sketch a particular aspect well?
- ...Does it fill a major subject gap?
- ... Might it be termed a "classic"?

"A much needed and valuable updating of the first edition (1954). Whitford (Engineering and Science Librarian, City College, N.Y.) adopts an "approach" design (e.g. mathematical, bibliographical, topical) in this well selected, annotated collection of articles, periodicals, and books. This guide outmodes..."

-CHOICE

SCARECROW PRESS, INC.

52 Liberty Street P.O. Box 656 Metuchen, N. J. 08840