lar points) and consequent systems.

Related to this attitude is the author's commendable tendency to integrate related concepts and theorems in basic general statements to be later particularized. Such a presentation is enlightening in that it underlines both the relatedness of some concepts or theorems and the differences among them. For example the formulation of the fundamental law of dynamics, in which impulse is considered the primary notion from which force derives, is a particular case when the impulse is differentiable.

The last noteworthy feature of the book is its coverage. Some topics that are often found in general-mechanics textbooks, such as Hamiltonian mechanics and the mechanics of filaments, are bypassed and deferred to more specialized treatises. This makes room for chapters generally not found in a book at this level, which provide the student with a strong and updated basis for the study and application of contemporary mechanics. Important chapters are the introduction to nonlinear vibrations and to motion constraints including a control system, the treatment of stability problems by Liapunov's theorem (stated without proof), a rigorous theory of the gyroscope with an indication of some of its industrial applications, the application of the theory of rigid-body motion to some astronomical problems (such as the precession of the equinoxes and

the time equation), and the inclusion of two introductory chapters approaching modern fluid mechanics from two different viewpoints. The first is devoted to the "microscopic" statistical aspect of the kinetic theory and the second to the "macroscopic" aspect of the theory of continuous media, including the equations of shock phenomena and magnetofluid dynamics.

Developed during several years of teaching at the Faculté des Sciences of Paris, the book is definitely student oriented, and several critical discussions of basic points are likely to give the reader an adequate insight into theoretical mechanics. (The section on "the search for absolute reference systems," for example, is delightful.) The exposition is quite clear, but does not go into every elementary detail because a reasonable knowledge of geometrical and other mathematical properties is assumed. Exercises are included, some with answers, and several of them are based on everyday experience. Appendixes contain some useful tables.

That the book is a translation could hardly be guessed by reading it because the translator, S. P. Sutera, professor at Brown University, is himself an expert in the field.

The reviewer taught general mechanics to both undergraduate and graduate students for several years at the University of Elisabethville in the Congo.

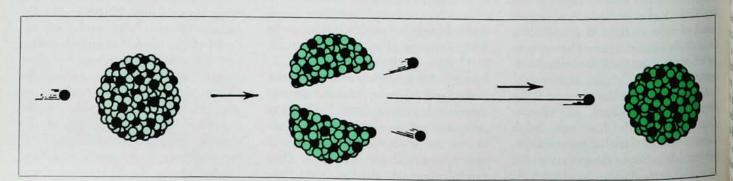
A treatise on nuclear reactions

INTRODUCTION TO NUCLEAR THE-ORY. By I. E. McCarthy. 555 pp. Wiley, New York, 1968. \$13.95

by VITTORIO CANUTO

The book, which grew out of a course for first- and second-year graduate students, is not based on the democratic distribution of the canonical topics normally found in a classical textbook on nuclear physics. Fundamental topics such as fission, electromagnetic interaction and beta decay are not even briefly discussed. On the other hand, such as nuclear reactions, formal-scattering theory and rearrangement collisions comprise half the book.

Chapters 8-14 offer by far the most complete and extensive treatment of the nuclear-reaction problem ever dealt with in this type of book. This reflects the author's main interest in nuclear physics, as explicitly stressed in the preface. These last chapters are really a complete treatise by themselves: very rich in details, tables, graphs and up-to-date references that are extremely useful.


Chapter 3, on nucleon-nucleon forces, does not do complete justice to the great contribution made by the Taketan group toward understanding nuclear forces. Although the phenomenological aspect of nuclear forces is quite extensively discussed, even including the most recent Tabakin potential, the extensive use of nonlocal potential by J. S. Levinger and his collaborators is not treated. It is my feeling that the deuteron problem, from the pedagogical point of view. can still offer a useful and natural starting point for the nuclear-force problem. The Bethe-Weizsacker mass formula is not discussed in depth, despite recent work relating it to the shell model.

A welcome sight because of its simplicity is the Gomes-Walecka and Weisskopf treatment of the Bethe-Brueckner equation. It appears to have been a very good idea to include it with detailed discussion of the healing properties of the wave function.

The shell model is treated as usual from the historical point of view with some useful techniques like Talmi-Moshinsky transformation, conveniently discussed at an appropriate length.

The mathematical steps are generally carried out in detail, and with the aid of appendixes 3 and 4, any student with a background in quantum mechanics should be able to read the book without difficulty.

A senior research physicist at the Goddard Institute for Space Studies, the reviewer is working on quantum electrodynamics and problems in astrophysics.

