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ELECTRONS IN METALS
WALTER A. HARRISON

Easy electrical conduction in metals is usually
attributed to the regularity of
metallic crystals. Why then does the
conductivity remain when a crystal melts?
Pseudopotentials provide an answer.

tail from the time-independent Schrod-
inger equation

IT IS REMARKABLE how much of the
basic description of electrons in metals
was made available to us 40 years ago
in the doctoral thesis of Felix Bloch.
He not only explained how electrons
can travel through perfect crystals
without colliding with the constituent
atoms, but he also discussed the scat-
tering of those electrons when the
crystal lattice is vibrating. The origin
of this scattering is now called the
"electron-phonon interaction," but the
calculation came some 20 or 30 years
before the word "phonon" was even
coined. He also evaluated the elec-
tronic contribution to the specific
heat.

After looking at this list it is fair to
ask, "What on earth have we been
doing for the subsequent 40 years?"
One answer to that question was pro-
vided in the next to last sentence of
Bloch's thesis publication. He pointed
out that superconductivity was not, at
that time, understood. I need not dis-
cuss whether it is understood at pres-
ent; that certainly depends very much
on how one translates the German
verb "erklaren." I will discuss instead
the problem that Bloch did address,
the motion of electrons in periodic po-
tentials. I will first present Bloch's
argument in a novel form and then see
how our insight into the problem has

evolved through experimental studies
of the Fermi surface and through the
evolution of the concept of a weak
pseudopotential. That concept now
appears to be the real physical basis
for metallic properties.

It was realized before Bloch's work
that, if we assumed electrons could
run through a crystal lattice without
seeing the atoms at all, we could
account for a wide range of the proper-
ties of metals. On the other hand, it
was not at all clear why electrons
should not see the atoms; this was the
question that was so effectively ad-
dressed by Bloch. I will restate his
argument as a special case of the con-
servation of momentum.

Momentum as a symmetry property

First I should talk about conserva-
tion of momentum itself. The con-
servation of momentum is a conse-
quence of the translational invariance
of space, which means that in free
space all points are equivalent. This
invariance implies that a translation of
coordinates leaves the form of the
Hamiltonian unchanged. The ques-
tion we would like to ask is: "What
can we learn about the states of an
electron from the translational invari-
ance alone?" The states of the elec-
tron can of course be computed in de-

if we know the Hamiltonian H, but
now all we want to assume known
about the Hamiltonian is its transla-
tional invariance.

In order to learn anything, clearly
we must translate the equation. This
could be a coordinate transformation,
but we will think of it as picking up
the Hamiltonian and the wave func-
tion and moving them a distance T,
leaving the coordinate system fixed.
Then

H(T - T)^(r - TJ = £i/(r - T)

Because we move everything together,
the equation has to remain true. But
the invariance of space tells us that
H ( r - T ) = H(r) ; so

H(TH(T - T) = E4(T - T)

We have found a new function, the
translated wave function i//(r — T) ,
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ATOMS IN A METALLIC CRYSTAL are arranged in a regular repeating pattern.
Many discrete translations, for example T and T' shown by the colored arrows, lead
to an arrangement in the interior identical to that before translation. —FIG. 1

that is a solution of the Schrodinger
equation with precisely the same ener-
gy as the wave function we started
with. If there is no degeneracy, the
new function \p(r — T) must be essen-
tially the same as the old function
i//(r). (A little group theory is re-
quired to tidy this up, but it is not es-
sential to our discussion.) The two
functions need not be identical but
can differ at most by a phase factor.
We conclude that translating the wave
function can at most change it by a
constant phase factor, and the phase
factor can depend on what translation
has been made.

iKr - T) =

We can do the same thing again, mak-
ing a new translation on the new wave
function; of course this translation
simply gives an additional phase factor

iKr - T - T ;) = ^ ( TV* ( T ' ty(r)

We see that the phases themselves
simply add and are therefore linear in
the translation. The most general
form that is linear in the vector trans-
lation T is

= - k T
Here k is a constant vector that is inde-
pendent of the translation T but may
very well depend on the state xp. Let
us then label the state by the k that
describes its translational properties

Mr - T) = e~lk'T\lsk(T) (1)

This procedure has told us some-
thing fairly specific about the transfor-
mation properties of the wave func-
tion. It still does not quite tell us
what the wave function looks like; let
us address that question next.

Form of the wave function

We can conveniently start by defining
a new function

uk(r) = r*-V*(r) (2)

In a crystal uk(r) is of course going to
be in the Bloch function, but our dis-
cussion here is still directed at elec-
trons in free space. We can turn equa-
tion 2 around to write

Mr) = uk(r)elk'T (3)

Now the question is: What does this

uk (r) look like? In particular, what
are its translational properties? To
find out we simply take this form for
the wave function and substitute it
back into equation 1. We obtain im-
mediately

uk(r - T) = uk(r) (4)

We have found that translating uk(r)
leaves it unchanged. In free space
any translation takes the Hamiltonian
into itself, and we conclude that any
translation will take this function
u/(.(r) into itself; it must therefore be
a constant. We conclude that the
electron state \pk(r) must be of the
form

Mr) = AeikT

where A is a constant.
It is remarkable that we have been

able to deduce the exact form of the
wave function with no knowledge
about the Hamiltonian except the
complete translational invariance.
The resulting form is as well known as
the Schrodinger equation, but this
derivation may not be.

Electron in a lattice

How does the argument change if the
electron is moving in a crystal lattice?
A crystal is a regular arrangement of
atoms like wallpaper (figure 1). All
points in the wallpaper pattern are not
the same, but the entire pattern can be
displaced so that each flower is re-
placed by an identical flower, and the
resulting pattern is the same as before.
Similarly in a crystal we have discrete
translations that leave the crystal inte-
rior unchanged. In such a translation
each plane of atoms is replaced by an
identical plane of atoms. v

Does this limited translational sym-
metry tell us anything about the wave
functions in a crystal? The argument
goes through exactly as before through
equations 3 and 4. However, now we
cannot say that any translation takes
uk into itself, because not all transla-
tions take the Hamiltonian into it-
self. Only the discrete set of trans-
lations takes the Bloch function into it-
self. We conclude as before that the
wave function is of the form of equa-
tion 3, but now all we can say about ufc

is that it has the complete translation-
al periodicity of the lattice. The
Bloch function uk(r) for a given
state will be identical in the neighbor-
hood of every atom. It will in fact re-
semble an atomic wave function near
each atom and vary smoothly between
them. In the complete wave function
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jjfk> the Bloch function uk is modu-
lated by a plane wave (figure 2).
These are the famous Bloch wave
functions that describe the behavior of
electrons in metals.

In free space we found that there is
a wave number k (or a momentum /?k)
that is a constant of the motion. In
the crystal we again find that there is
a k that is a constant of the motion,
and we then call the quantity 7?k the
crystal momentum. The correspond-
ing state carries current, and because
it is an eigenstate in the perfect crystal
it does not change with time. We
have demonstrated that there are cur-
rent-carrying states in the crystal.

Nature of symmetry arguments

The demonstration is a symmetry
argument, and symmetry arguments
are peculiar. One of their peculiar
features is that they have no real coun-
terpart in everyday life where we
make only the most trivial sort of sym-
metry arguments. The most sophisti-
cated such argument I have been able
to find js the search for the men's
room in a public building. If I come
upon the ladies' room, then I say
"Without question the men's room will
be in the symmetric position on the
opposite side of the building." So I
march across the building with almost
religious fervor in the knowledge that

I am going to find the men's room
there.

There are at least two things in
common between that everyday ex-
ample and symmetry arguments in
physics. One is the religious fervor;
when we conclude something on the
basis of symmetry, we feel absolutely
certain that it is true. But of course in
both cases, in my example and in
physics, we may very well be wrong.
Frequently the architect will choose to
save money on plumbing and put the
men's and the women's rooms back-to-
back on one side of the building.

There are a number of cases where
we have been wrong also in physics.
For example the discovery that there
was not the expected symmetry of
parity came as a thunderous blow.
Even within solid-state physics, con-
cerning the existence of the Bloch
state, the Great Architect in the Sky
saved plumbing when He made anti-
ferromagnets. The electron states,
again with a periodic arrangement of
atoms, are not the Bloch states that we
have deduced here. Also, in the case
of the Mott transition, we have a per-
iodic arrangement of the atoms but
not Bloch's state for the electrons. In
that particular case I am not absolutely
sure whether the creator was the Great
Architect in the Sky or whether it was
Nevill Mott, but recent work seems to
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THE BLOCH FUNCTION ii*(r) has the same translational symmetry as the crystal
and resembles the atomic wave function near the atoms. The electronic eigenstates
take the form \p,.- = ul:(r)ekr, where the states are indexed by the wave number k of
the modulating plane wave. —FIG. 2

favor the former—to the credit of the
latter.

There are some other peculiarities
about our symmetry argument. One
is that, at least in a mathematical sense,
if we move one of the atoms out of
place, the whole symmetry argument
breaks down. Bloch had already
dealt with this aspect in 1928, in treat-
ing the electron-phonon interaction.
He showed that we could describe
the states in terms of a perfectly ar-
ranged lattice and treat the small
displacements as a correction that
leads to scattering. There is a further
problem: Imagine that we melted the
crystal. We then destroy all sem-
blance of translational periodicity and,
as it turns out, the resistivity does not
change very much. It is fair then to
ask whether there is more to the "erkla-
rung" of metallic conductivity than the
symmetry argument giving us the
Bloch functions. Let us look at that
subject next.

After the Bloch theorem

There have been two major areas of ac-
tivity in the postwar period. One con-
cerns the effects of the Coulomb inter-
actions among the electrons. These
are large effects and were not dealt
with in a definitive way in any of the
earlier work. One of the central re-
sults of recent work has been the ex-
planation of why those interactions
can be neglected or at least treated in
the average way implicit in Bloch's
early work. The second area of activi-
ty concerned the interaction of the
electrons with the ions in the metal.
That is the part that I wish to concen-
trate on here, and, of course, it is spe-
cifically the question that Bloch ad-
dressed.

After the war there were two sepa-
rate approaches—theoretical and ex-
perimental. There are always these
two approaches, but seldom are they
quite so separate as they were in this
case. Bloch had shown us that in a
crystal we can associate a wave num-
ber with every electron state, and
these wave numbers provide a means
of indexing the states. Each state has
an energy, and that energy is therefore
a function of the wave number. This
function defines the electronic band
structure of the metal, in direct analo-
gy with free atoms. There, by symme-
try, we conclude that we can describe
the states in terms of angular-momen-
tum quantum numbers, and the elec-
tronic structure is the energy of the
states as a function of these quantum
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numbers. In solids the wave numbers
take the place of the angular-momen-
tum quantum numbers. The theoreti-
cal problem was to make a calculation
of the energy as a function of wave
number. That turns out to be diffi-
cult.

Immediately after the war, it was
really out of the question to attempt
the calculation of the energy as a func-
tion of all wave numbers. What in
fact was done was to select a few iso-
lated wave numbers, which a theorist
had reason to believe may be important
or representative, and compute the
energy eigenvalues for those wave
numbers. The problem, of course, was
that one can not measure such eigen-
values directly, and there was no ex-
perimental check on the calculated val-
ues. In addition, there was no a priori
reason for confidence in the energy-
band calculations, largely because of
the uncertainty in the treatment of the
electron—electron interaction. Theo-
rists were able to develop along their
own path and compare their calcula-
tions with each other, but there was no
contact with experiment.

Experimentalist's difficulties

The situation was not much better
with the experimentalists. They set
out to make measurements of proper-
ties that depend on the electronic
structure and, in fact, all properties
do. Measurements were made of the
resistivity, the Hall effect, and the de
Haas-van Alphen effect in order to
gain information about the electronic
structure. The difficulty was that all
of these properties depended on com-
plicated integrals of the energy as a
function of wave number, and there
was no way to go from the experiments
back to a determination of the energy
bands. It was necessary to propose a
model and adjust parameters. Several
people, each studying different proper-
ties of a metal such as aluminum,
would each propose a different model
of the band structure. This diversity
clearly led us no closer to a knowledge
of the true energy bands.

We can blame the theorists for a
further difficulty in the interpretation
of experiments. The most complicat-
ed form of energy band that a theorist
could conveniently use in treating
properties corresponded to ellipsoidal
constant-energy surfaces, so that virtu-
ally all the calculations were done for
those surfaces, and the experimental-
ists naturally used ellipsoidal surfaces
to fit their experiments. As it has

turned out, these surfaces seldom arise
in real metals. The theoretical and
experimental approaches proceeding
separately were getting nowhere at all.

Fermi surfaces

The big breakthrough came in 1955
when Brian Pippard recognized that
the Fermi surface is an aspect of the
electronic structure that could be fair-
ly directly measured experimentally
and that in addition could be calculat-
ed by band-calculation techniques.
What is the Fermi surface? We have
said that the energy of the electronic
slates is a function of wave number of
those states. The wave numbers are
three-dimensional vectors lying in a
three-dimensional wave-number space.
In a metal there are only a certain
number of electrons present to oc-
cupy these states, two or three elec-
trons from each atom, and in the
ground state of the system these elec-
trons will occupy only the lowest lying
levels (figure 3). There will be re-
gions of wave-number space where

the states are occupied and other re-
gions where they are not. The surface
in wave-number space that divides
the occupied from the unoccupied
states is called the Fermi surface.
What Pippard recognized was that the
anomalous skin effect depends only on
the geometry of the Fermi surface.
He then set out to determine the
Fermi surface of copper (figure 4).

In fact, it is not possible to go
directly from the experiment back to
the geometry of the Fermi surface,
even by using the anomalous skin
effect. It was again necessary to pro-
pose a model of the Fermi surface
and to adjust it until it fitted. How-
ever, the experimental information
was more complete and the goal (geo-
metry of the Fermi surface) more
limited than with other phenomena.
As it turned out Pippard did not get
quite the right answer for the Fermi
surface of copper. Bulges have been
found that he did not discover. Inter-
estingly enough that error is really of
very little importance.
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THE ELECTRONIC STRUCTURE is the energy of the one-electron states as a func-
tion of wave number k. In the ground state of the metal, states in some regions o
wave-number space are occupied by electrons; states in other regions are not. A e

Fermi surface divides these regions in wave-number space. —FK*
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The real point was that Pippard had
focused attention on one aspect of the
electronic structure, which could be
proven right or be proven wrong. If
he had the right solution, all other ex-
periments should be consistent with
exactly the same Fermi surface. Band
calculations could be done to see if
they were also yielding the correct
Fermi surface.

Pippard's puzzle

It is interesting in passing to recall
how Pippard arrived at the Fermi sur-
face he proposed, even though it
turned out to be in error. Once he
had collected the data and began puz-
zling over the shape of surface that
would fit his data, he actually found
the solution in his pocket.

He was at the time amused by a
novel brain teaser. The puzzle was:
What object has three identical per-
pendicular projections, as in a mechan-
ical drawing, each of which is a circle
with two crossed diagonal diameters?
Pippard carried a model of this object
in his pocket. A little thought will
lead to the solution: the intersection of
three perpendicular cylinders (figure
5). That shape had the essential fea-
tures that were needed to explain his
data. He began with such a shape,
rounded it off a little, bulged it here
and there, and finally fitted the data.

PIPPARD'S FERMI SURFACE FOR COPPER. Pippard noted that the anomalous
skin effect depended only on the geometry of the Fermi surface; on the basis of his
experiments he proposed this shape as the Fermi surface of copper. The polygon is
made up of Bragg reflection planes. An electron accelerated into one face is diffracted
to the opposite face. —FIG. 4

PIPPARD'S PUZZLE was: "What solid object has the three perpendicular projections shown on the
right above?" The answer, a shape made from the intersection of three mutually orthogonal cylinders
(sketched on the left), suggested the Fermi surface of figure 4 to Pippard. —FIG. 5
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It gave a specific model, which he
thought then to be the Fermi surface
of copper.

After this time, the activity in the
Fermi-surface studies expanded ra-
pidly and so did the calculation of en-
ergy bands. The energy-band calcu-
lators were in fact obtaining the cor-
rect Fermi surfaces; the approxima-
tions they had used to treat the elec-
tron-electron interactions were sound,
and therefore the methods and ap-
proximations they used were good
enough to give a good description of
the electronic structure. A mass of
experimental activity went into docu-
menting in detail the Fermi surfaces
of a wide range of metals. This effort,
now called "Fermiology," continues to
expand.

Nearly free electrons

In the course of this study an exceed-
ingly remarkable fact emerged. It
was that the energy-band structure in
the simple metals, such as aluminum,
is very close to that for free electrons.
That conclusion was not immediate
because the Fermi surfaces themselves
were exceedingly complicated.

To see that such complicated sur-
faces are consistent with nearly-free-
electron behavior we imagine first a
gas of electrons with no perturbing
potentials from the atoms. The en-
ergy in a free-electron gas increases
monotonically with the wave number;
so the constant-energy surfaces are
spheres, and the Fermi surface itself
will be a sphere. Now let us intro-
duce the atoms of the crystal, but let
their interactions with the electrons be
very weak. We may still expect that
the electrons can be diffracted by this
periodic arrangement of atoms, just as
light is diffracted from a grating. An
electron will only diffract if its wave
number satisfies the Bragg reflection
condition for this lattice. To put it
another way, the electron can only be
diffracted if its wave number lies on a
Bragg reflection plane in wave-num-
ber space.

The Bragg planes occur at wave
numbers of the order of 2w divided
by the interatomic spacing. But the
wave numbers of electrons at the
Fermi surface are also of the order of
2?r divided by the lattice spacing; so
we can expect the Bragg planes to in-
tersect the free-electron Fermi sphere.
There is, of course, a negligible num-
ber of the electrons on the Fermi
sphere that lie exactly on the intersec-
tion with the Bragg plane. Thus al-

most all of the electrons will proceed
as if there was no lattice at all. In
that sense the diffraction is unim-
portant.

With a magnetic field

Let us imagine what happens if we
apply a magnetic field. Then each
electron with the Fermi energy moves
in a circular or helical orbit as its wave
number moves in a circle around the
Fermi sphere (figure 6). When,
however, the wave number meets a
Bragg plane it will jump to the oppo-
site Bragg plane and continue on its
way. When it meets another Bragg
plane, it will jump again and continue
on its way. Although the electron
propagates almost all of the time as if
it were free, the wave number is jump-
ing around the Fermi surface in a
complicated way.

It is interesting to ask how this elec-
tron is moving in real space as its wave
number jumps around on the Fermi
surface. We imagine an electron
moving perpendicular to the magnetic
field. Between Bragg reflections, as it
moves across the Fermi surface, it
moves in a circular arc within the crys-
tal. When it diffracts, it abruptly
changes direotion and proceeds along
another circular arc. Thus the orbit in
real space is made up of a collection of
circular arcs and may be quite compli-
cated.

As it turns out, when we represent
these free-electron-like states in terms
of the crystal momentum, or in terms
of the wave numbers of the Bloch
wave functions, we find that the
Fermi surface takes the shape of these
orbits in a magnetic field. It is no
longer the original free-electron
sphere, but a sphere that is chopped
up and reassembled into surfaces com-
posed of spherical segments. Part of
the business of Fermiology was assem-
bling these spherical segments and
comparing the results with experi-
ments. The remarkable thing was that
the interaction between the electrons
and the ions in the crystal was suffi-
ciently weak that this diffraction ap-
proach gave a rather good quantitative
understanding of the observed Fermi
surfaces.

This was very much the same prob-
lem as was faced in 1928. If we as-
sume that the electrons interact only
weakly with the lattice, then we con-
clude that the Fermi surfaces will look
as they do. How can the electrons re-
spond so weakly to the potentials aris-
ing from the metallic ions when those

potentials are known to be very
strong? Even with quantum theory
and the periodic lattice assumed by
Bloch, we would expect a much
stronger interaction than that ob-
served.

Pseudopotential theory

The simplest way to resolve this diffi-
culty is in terms of pseudopotentials.
The concept of a pseudopotential is
quite old and originated with Fermi,
who was interested in the scattering of
strongly interacting particles. Consid-
er, for example, the scattering of a
neutron by a proton. These particles
interact sufficiently strongly that there
exists a bound state of the two, the
deuteron. In terms of the scattering
theory, that means that the phase
shifts are greater than TT, which in
turn means that we can not use per-
turbation theory in treating the in-
teraction.

Fermi suggested that we construct
an artificial potential, a pseudopoten-
tial, which gives exactly the same
phase shifts as the real potential but
with any integral multiples of *
dropped. Such a pseudopotential will
yield precisely the correct scattering
because adding multiples of -n to the
phase shift does nothing to the scatter-
ing cross section. Yet it is a potential
for which the phase shifts are smaller
than 7r, and so perturbation theory can
give meaningful results. Pseudopo-
tentials in a solid accomplish precisely
the same goal.

We wish to construot a pseudopo-
tential that will give precisely the
same energy-band structure as the true
potential but will reflect the inherently
weak observed interaction between
electrons and ions. The most direct
way to describe the corresponding
pseudopotentials is in the framework
of the calculation of the energy eigen-
values themselves, a band calculation,
and so I will describe it in that way.
However, we will see that the real
virtue of the method will be in elimi-
nating the band calculations al-
together. I will do this elimination
in a novel way that can be general-
ized directly to a much wider range
of problems.

For the moment we seek a solution
of the Schrodinger equation,

2m
(5)

The usual approach for solving this
equation, particularly if one is g°inS
to use a computer, is to make an ex-
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pansion of the wave function in a com-
plete set, such as plane waves

where the ak are coefficients and the
|k) are plane waves. We can then
substitute this form for the wave
function in the Schrodinger equation,
multiply on the left by a plane wave
and integrate. This procedure con-
verts the partial differential equation
into a set of simultaneous linear alge-
braic equations in the coefficients ak

with as many unknowns as there are
terms in our expansion. It turns out
that plane waves are a poor set for ex-

pansion of states in the solid because
of the need to duplicate the sharp
oscillations of the atomic wave func-
tions that persist in the Bloch wave
function in the neighborhood of the
ions. We can not obtain a reasonable
description of the state witliout using
many hundred plane waves, and we
are left with the problem of solving
many hundred simultaneous equations
in many hundred unknowns.

We seek an improvement by
supplementing our expansion with
terms that may duplicate these
atomic-like oscillations and hoping to
get by with many fewer plane waves.

XX
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WEAK INTERACTION. If electrons interact sufficiently weakly with the metallic
atoms, the interaction can be treated as if it gives rise to simple diffraction. Then an
electron in the crystal, moving in a magnetic field, will move in a circular arc between
diffraction events. In such a case the Fermi surface consists of a sphere chopped up
and reassembled; it has cross sections of the same shape as the electron orbits. —FIG. 6

PSEUDOPOTENTIAL describes the weak interaction between electrons and the
metallic lattice. It is much weaker than the true potential. However, it yields
eigenstates of the same energy and pseudowavefunctions identical to the true wave-
function between metallic atoms. —FIG. 7

In supplementing our expansion, we
are using an over-complete set be-
cause plane waves alone are complete.
However, the expansion remains legiti-
mate.

At this point we distinguish two
categories of states in the metal. First
are the core states, the lowest-lying
states in the free atom. (In aluminum
they are the Is, 2s and 2p states.)
Those states remain essentially the
same in the solid as in the free atom,
and are therefore known at the outset.
The conduction-band states, which de-
rive from the free-atom valence states
(3s and 3p in aluminum) differ ap-
preciably from the free-atom states
and must be described in our expan-
sion. However, they will be ortho-
gonal to the core states, and it turns
out that an expansion in plane waves
and core wave functions requires only
a small number of plane waves for de-
scription of the conduction-band
states. The addition of core wave
functions orthogonalizes the smooth
plane-wave terms to the core states
and duplicates the sharp oscillations
near the metallic ions. This procedure
is also the essence of the orthogonal-
ized plane-wave method for band cal-
culation developed by Conyers Her-
ring in the 1930's. He orthogonalized
each plane wave to the core states and
then expanded the conduction-band
states in the resulting orthogonalized
plane waves.

In our case we include core wave
functions, which we write |o:), as
part of the overcomplete set and ex-
pand the wave function

t = S^|k> + S«aa|a> (6)

This form is substituted in the Schro-
dinger equation, equation 5, as before.
But from there on the tack is entirely
different. Instead of obtaining alge-
braic equations to be solved by ma-
chine, we seek an equation that can be
treated in perturbation theory. We
can do it by calling the sum over plane
waves a "pseudowavefunction," <p —
2fctf/.|k ). Then the Schrodinger
equation becomes

h2

- — VV + Vip +
2m

2a(Ea - E)aa\a) = E* (7)

We have noted that the Hamiltonian
operating on a core state | a )
gives simply the core-state energy Ea

times | a) and have taken the term
in E\a) to the left. The coeffi-
cients aa are obtained by multiplying
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on the left by a particular (a\ and
by letting the first two terms operate
to the left. We obtain aa = — (a\<p).
Substituting this form in equation 7
we obtain the pseudopotential equa-
tion

(8)
2m

where the pseudopotential operator W
is given by

W = V+2a(E- Ea)\a)(a\ (9)

The pseudopotential equation be-
comes the basis for the calculation and
is remarkable in a number of ways.

First the pseudopotential is small
and can reasonably be treated by per-
turbation theory. The reason is that
the pseudowavefunction is smooth,
consisting of a small number of plane
waves; it is obtainable with only small
corrections to the plane-wave solu-
tions obtained from equation 8 if W is
dropped altogether. At the same time
the pseudowavefunction must equal
the true wave function between atoms
where the core wave functions vanish
as may be seen from equation 6.

Thus the pseudowavefunction is sim-
ply the true wave function with the
atomic-like oscillations removed (fig-
ure 7). We may also see more directly
from equation 9 that the pseudopoten-
tial will be small. The energies E of
interest are much higher than the core
energy; so the second term in equation
9 is positive and will tend to cancel
the negative first term in the same
equation, which describes the attrac-
tion of the electrons to the ions.

An exact equation

The second important aspect of this
equation is that it is exact. We have
not made any approximations on the
initial Schrodinger equation, except
for the assumption that the core states
remain unchanged. (If we were wor-
ried about that, we could of course use
core states calculated in the crystal.)

There is also something very myste-
rious about this equation. As I have
derived it the pseudopotential is
uniquely defined, but it turns out to be
somewhat arbitrary. For example,
E — Ea can be replaced by any other
constant Ca, and the equation re-

( V X X
SUCCESSIVE ELECTRON SCATTERING is the important contribution to the inter-
action between atoms in a metal, after direct Coulomb interaction. It arises by scatter-
ing, through a pseudopotential interaction, from pairs of atoms. FIG. 8

mains exact. That result is most easily
seen by imagining we have solved this
equation with the new pseudopoten-
tial

2m
2aCa\") (a\<p) = E'\<p)

We multiply on the left by the corre-
sponding true wave function (that
is, the same wave number) and
integrate. In the first two terms we
let the Hamiltonian operate to the left
to obtain E ( ^ | ^ ? where E is
the true energy of the state. In the
third term, we note that the true wave
function is orthogonal to all core
states; so these terms go out whatever
the value of the Ca, On the right we
obtain E1 (\p\<p) with Ef again the
eigenvalue of the pseudopotential
equation with the modified pseudopo-
tential. We obtain

E(+\v) = E'{4,\<p)

The overlap (i)/\<p) will never be
zero if ^ and <p describe the same
state, and we conclude that the eigen-
value E! we obtain here is identical to
the true energy E for any choice of
Ca. One trivial case is with all Ca

equal to zero. Then of course the
pseudopotential becomes the true po-
tential, and the pseudowavefunction
becomes the true wave function. The
pseudopotential equation obviously
leads to the correct eigenvalues. This
choice is consistent, but it does not
yield a useful pseudopotential. It
does not matter which pseudopo-tential
we use as long as we solve the equa-
tions exactly. However, we are al-
ways going to solve the equations in
perturbation theory, and therefore our
answers will depend on exactly which
pseudopotential we have chosen.
There is no correct pseudopotential;
there is not even really a best pseudo-
potential. There is only a range of
good pseudopotentials, and the nu-
merical results of calculations inevita-
bly depend on which of these has been
selected by the calculator. Fortunate-
ly it turns out from experience that
there is a range of pseudopotentials
that give meaningful results in calcula-
tions on the simple metals.

Calculation of metallic properties
Once we have transformed to a pseu-
dopotential equation, with a term that
we can treat as a perturbation, we are
in a position to forget about the en-
ergy-band calculation itself. We cal-
culate directly any property that may
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be of interest. For example, the re-
sistivity of the liquid metal that we
mentioned earlier becomes a very sim-
ple calculation. We have, in zero
order, plane-wave pseudowavefunc-
tions. The perturbation depends upon
the structure of the liquid, which we
can obtain from experiment, and upon
calculable atomic pseudopotentials.
Then the calculation of the resistivity
of the liquid metal to lowest order be-
comes trivial.

We find that the results are reasona-
bly in accord with the experiment, but
this case turns out to be one where the
result is rather sensitive to the choice
of pseudopotential. By thinking
through the argument for arbitrari-
ness of the pseudopotential we see that
the sensitivity means precisely that
this is a case where lowest order per-
turbation theory is not very good. A
particular pseudopotential that gives
the experimental answer in a lowest-
order calculation does not yield small
higher-order terms; rather it yields
higher-order terms that cancel in the
calculation of this particular property.
In many properties the calculations
are more reliable, and in all cases the
answers appear to be within a reasona-
ble range.

We can even do calculations that
were hard to imagine in terms of
energy-band calculations themselves.
We can sum the total energy of the oc-
cupied states to second order in the
pseudopotential and thus compute the
total energy of the crystal. We then
obtain directly the energy changes
when the atoms are rearranged. In
this way we can calculate, for ex-
ample, the vibrational spectrum. In
doing the pseudopotential calculation
of the energy to second order we are
including interactions between atoms
that arise from successive electron
scattering from the two atoms (figure
8).

Extension to other systems

Perturbation theory has made possible
a much more complete understanding
of simple metals than of any other state
of condensed matter. It is unfortunate
that this possibility is limited to the
simple metals, which are free-electron-
like. We can not directly extend it
even to the noble and transition metals
because of the states in the metal aris-
ing from the atomic d states. We can
not treat these as core states, because
they change as we go from the free
atom to the solid. At the same time it
is not useful to treat them in terms of a

pseudowavefunction; they are suffi-
ciently well localized that we need a
very large number of plane waves in
their expansion.

However, in terms of the way we
have developed the pseudopotential
method here it may be obvious how we
should proceed. We can again
supplement our plane-wave expansion
with core wave functions, but now
also with atomic d states. They are
not eigenstates of the Hamiltonian in
the metal, but they are not very far
from being so. We can keep track of
the corrections, and these extra terms
will be small. They, as well as the
pseudopotentials, are treated as per-
turbations. Although it is more com-
plicated, the formulation yields again a
fairly simple pseudopotential, which
we can use in the calculation of elec-
tronic properties. It is even possible
again to sum the total energy of the
crystal, at least in the noble metals, to
obtain the total energy as a function of
the configuration of atoms.

The important point about this gen-
eralization is not so much that we have
been able to treat the transition met-
als, but that it makes clear that the es-
sence of the method is not free-elec-
tron-like behavior; we do not have
that in the transition metals. The es-
sence is something different that can
be described as a general mathemati-
cal method. Again, in terms of an ei-
genvalue problem, we obtain a Hamil-
tonian matrix by expansion in some
complete set of states. The eigen-
values are obtained by diagonalizing
the matrix. If the off-diagonal matrix
elements are initially very small we
can use perturbation theory; these are
the problems witli which we have tra-
ditionally been very successful. If
they are not very small, or if a very
large number of them are appreciable,
we cannot directly use perturbation
theory, and the solution becomes diffi-
cult.

The essence of the pseudopotential
method is to make a transformation on
this matrix to a basis set that includes
not only the initial complete set of
states but also other terms that we
think for physical reasons will allow a
more concise description (fewer terms)
of the true states. This ordinarily is a
nonunitary transformation of the
Hamiltonian matrix; it is also a non-
square transformation because we ex-
pand to a more numerous basis.
However, if our physical intuition is
good and we have included in our ex-
pansion terms that make a good ap-

proximation to the eigenstates, the off-
diagonal matrix elements will be re-
duced and concentrated near the diag-
onal. Perturbation theory then be-
comes applicable. The trouble in per-
turbation theory is ordinarily not so
much the size of the matrix elements
but their failure to become sufficiently
small far from the diagonal. Good
intuition enables us to reduce these
distant matrix elements to proceed
with perturbation theory.

Insulators and molecules

In this context the method for general-
ization to insulators and to molecules
is clear. We again use an over-com-
plete set. In die case of an insulator
the plane-wave expansion is supple-
mented by a Bloch sum of atomic or-
bitals. In the case of molecules, the
plane-wave expansion is supplemented
by linear combination of atomic or-
bitals. In this method the zeroth-order
approximation for molecules becomes
the LCAO (linear combination of
atomic orbitals) method, which has
been so successful in theoretical chem-
istry. The approach is then to use
perturbation theory to improve upon
this zeroth-order approximation. My
hope is not really for more accurate
calculations but that the use of per-
turbation theory will allow a simpler
and more complete description of com-
plicated molecules. Perhaps it will
provide a systematic treatment of
bonds and, in higher order, the inter-
action between bonds.

Obviously in describing this current
effort I am going well beyond the dis-
cussion of electrons in metals. In so
doing I am expressing the hope that
the very circuitous path that began
with Bloch's thesis in 1928 and led
through the intricacies of Fermi sur-
faces and through the mysterious pseu-
dopotential, may take us in a meaning-
ful way into molecular physics, and
possibly some day even to organic sys-
tems.

This article is based on a talk given at
the 25,26 Oct. 1969 symposium at Stan-
ford University, held in honor of the 40th
anniversary of Bloch's thesis publication.
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