scientist or administrator who fails to become aware of the new issues raised here does so at his peril.

\* \* \*

Paul Craig is a physicist specializing in cryogenics at Brookhaven National Laboratories and an associate professor at the State University of New York, Stony Brook.

### Theory of natural diffraction

ELEMENTS OF X-RAY CRYSTAL-LOGRAPHY. By Leonid V. Azároff. 610 pp. McGraw-Hill, New York, 1968. \$15.75

by Richard B. Zipin

My own introduction to crystal geometry came seven years ago as a beginning graduate student in a course in which we depended on lecture notes. As the instructor was not completely satisfied with any of the textbooks available at that time, he was therefore writing his own. As far as I know, my former instructor's book has not yet been published, but here at last is a book that will fill the sorelyfelt gap in my personal library. Many sections of the book were familiar to me even before I read them, as Leonid Azároff, the author of this book, and

the man who taught me both got their crystallographic educations at MIT.

In his preface, the author warns that many readers may be reminded of lectures that they have had. He and my own professor presumably listened to the same lectures, and I have only had such lectures secondhand. Nevertheless, on opening this book I became reunited with an old friend—a clear and fairly complete introductory exposition of x-ray crystallography that should be welcomed by students and teachers alike. The author is already well-known to students of the solid state, not only for his research, but also for his previously published textbooks.

This text is based on the concept that diffraction spectra of single crystals constitute a reciprocal-lattice array. The author has separated his material into four distinct areas: crystal geometry, x-ray physics, diffraction theory and experimental methods. His personal interests are readily apparent in that the latter two subjects comprise more than two thirds of the book. The appendixes include material aimed at helping the students who will use the book as a text; there is some mathematical development, a set of tables, a short bibliography, and answers to some of the problems that appear at the end of each chapter. There is adequate material included so that in-

Powder sample Film

POWDER METHOD. The diffraction cones emanating from a cylindrical sample are shown intersecting a film strip; the strip is also placed cylindrically to intercept all the cones produced. (From Elements of X-Ray Crystallography).

structors will find the book suitable for an introductory course at either the undergraduate or beginning graduate level.

My own preferences would have been better satisfied with a book that deals more extensively with the group-theoretic concepts in crystal geometry and the physics of x rays, rather than a book that concentrates so much on experimental techniques; but each author must write a book that satisfies himself. I can only recommend this book to those who require a good introduction to x-ray crystallography written with students in mind.

\* \* \*

The reviewer is responsible for the application of optics to advanced dimensional measurement systems at the Automation and Measurement Division of the Bendix Corporation, Dayton, Ohio.

## Mossbauer spectroscopy

MOSSBAUER EFFECT METHOD-OLOGY, Vol. 3. Conf. proc. (New York, Jan. 1967) Irwin J. Gruverman, ed. 250 pp. Plenum Press, New York, 1967. \$12.50

#### by H. H. Wickman

For the past four years (1965-68) the New England Nuclear Corp (a supplier of Mössbauer sources) has sponsored a Mössbauer-Effect Methodology Symposium held prior to the annual meeting of the American Physical Society. The present volume, edited by Irwin Gruverman of New England Nuclear, contains proceedings of the third symposium held in New York, in January, 1967. The volume is composed of two sections, the larger being a collection of applications of Mössbauer spectroscopy in the area of material sciences; the second section is devoted to the methodology of several relatively recently developed Mössbauer nuclides. The level of the articles is generally introductory and for the most part the discussions are accessible to nonspecialists.

Not all of the articles contained in the material sciences section could be considered to be in the mainstream of current research in which gamma-ray nuclear resonance is involved. Among the articles that should be of fairly general interest is a concise description of chemical and magnetic order in alloy phases written by Clyde W. Kimball, who considers in some detail the

## VITAL NEW EDITIONS



## FRACTURE: AN ADVANCED TREATISE

VOLUMES 4 and 5

edited by HAROLD LIEBOWITZ

The George Washington University, Washington, D.C.

Volume 4

#### ENGINEERING FRACTURE DESIGN

CONTENTS:

Evaluation of Fracture Tests and Specimen Preparation. Plane Strain Fracture Toughness. Temperature Effects on Fracture. Fracture and Carrying Capacity of Notched Columns. Prestressed Brittle Structures. Design of Attachments and Connections with Brittle Materials. Effects of Residual Stress on Brittle Fracture. Brittle Fracture in Weldments. References. Author Index. Subject Index.

January 1969, about 450 pp., \$23.00 Subscription Price, \$19.55°

## Volume 5

## FRACTURE DESIGN OF STRUCTURES

CONTENTS:

Fracture Arrest. Fracture Design Practices for Rotating Equipment. Fracture Design Practices for Pressure Piping. Selection of Material and Other Aspects of Design against Brittle Fracture in Large Steel Structures. Fracture Design Practices for Ordnance Structures. Fracture Design Practices for Ship Structures. Fracture Design Analysis for Airflight Vehicles. References. Author Index. Subject Index.

February 1969, about 525 pp., \$25.00 Subscription Price, \$21.25°

 Special Subscription Prices for Iindividual Volumes Valid Only on Orders for the Complete Set Received Before Publication of the Last Volume.

## LINEAR FERRITE DEVICES FOR MICROWAVE APPLICATIONS

by W. H. von AULOCK and C. E. FAY

Bell Telephone Laboratories Incorporated, Whippany, New Jersey

Supplement 5 to

Advances in

**ELECTRONICS AND ELECTRON PHYSICS** 

This monograph is a companion volume to W. H. von Aulock's Handbook of Microwave Ferrite Materials. It provides a comprehensive and unified discussion of linear ferrite devices such as isolators, circulators, switches, and phase shifters which have found widespread application in microwave technology. Of particular interest is the treatment of lumped element and stripline Y-junction circulators, the theory of resonance isolators, and the discussions of latching phase shifters and high-power switches.

1968, about 225 pp.

## HIGH ENERGY PHYSICS

VOLUMES 3 and 4

edited by E. H. S. BURHOP

University College, London

The articles in this multi-volume treatise are written by specialists in both theoretical and experimental physics. Each chapter introduces a specialized topic and through the course of its presentation brings the reader to the current state of study.

#### CONTENTS OF VOLUME 3:

B. H. BRANSDEN: The K Meson-Nucleon Interaction. E. H. S. BURHOP: Mesonic Atoms. C. RUBBIA: Weak Interaction Physics. References. Author Index. Subject Index.

February 1969, about 400 pp.

#### **CONTENTS OF VOLUME 4:**

DONALD H. MILLER: The Elementary Particles with Strong Interactions, Part I: The Baryon Systems. DONALD H. MILLER: The Elementary Particles with Strong Interactions, Part II: The Meson Systems. R. ARMENTEROS and B. FRENCH: Antinucleon-Nucleon Interactions. References. Author Index. Subject Index.

April 1969, about 475 pp.

### Advances in MICROWAVES

**VOLUME 4** 

edited by LEO YOUNG

Stanford Research Institute, Menlo Park, California

#### CONTENTS:

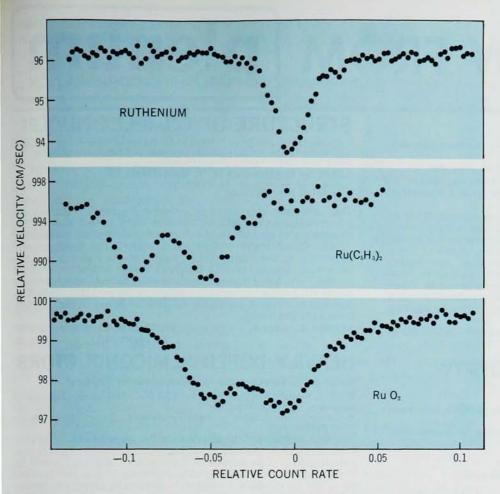
W. J. INCE and D. H. TEMME: Phasers and Time Delay Elements. C. C. H. TANG: Mode Conversion in Nonuniform Multimode Waveguides and Transitions. T. NAKAHARA and N. KURAUCHI: Millimeter Waveguides with Application to Railroad Communications.

January 1969, about 475 pp.

#### Advances in

# ELECTRONICS AND ELECTRON PHYSICS

VOLUME 25


edited by L. MARTON

National Bureau of Standards, Washington, D.C.

#### CONTENTS

EDWARD L. HUBBARD: Linear Ion Accelerators. S. STRICKER: The Hall Effect and its Applications. JAMES R. WAIT: Recent Theoretical Advances in the Terrestrial Propagation of VLF Electromagnetic Waves. P. ZALM: Thermionic Cathodes. E. ZEITLER: Resolution in Electron Microscopy. Author Index. Subject Index.

1968, 346 pp., \$16.00



MOSSBAUER ABSORPTION SPECTRA for a source of Rh<sup>66</sup> in ruthenium and absorbers of 97 mg/cm<sup>2</sup> ruthenium metal, 1800 mg/cm<sup>2</sup> Ru(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> and 750 mg/cm<sup>2</sup> RuO<sub>2</sub>. (From O. C. Kistner in Mössbauer Effect Methodology, Vol. 3.)

line-shape problems associated with dilute metal atoms having statistically distributed near-neighbor environments. For those interested in computer applications, the article by R. H. Goodman dealing with online computer techniques in Mössbauer spectroscopy will be of use, particularly for the discussion of solutions to interfacing problems associated with small computers such as a PDP8.

The latter part of the book is devoted to recent investigations of relatively less exploited Mössbauer levels; among them are the Coulomb excited levels in the rare-earth region. In addition, Cs133, Sb121, Ru199, and K40 are considered. The articles in this section are well written, authoritative, and generally offer an excellent introduction to the methodology of these isotopes. The production of K40 requires a source of thermal neutrons and is therefore not likely to become a commonly used Mössbauer level; the emphasis of the discussion by David W. Hafemeister and E. B. Shera is mainly on the production of this level. The gamma-ray energies of Cs133 (81 keV) and Ru<sup>199</sup> (90 keV) necessitate lowtemperature-source and absorber con-

figurations for maximal resonance absorption; while they both have certain attractive features, the problems of small effects (Cs133) or involved source preparation (Ru199) make experiments with these nuclei considerably less than routine when compared with Fe57 or SN119m. Surprisingly, the drawbacks just mentioned do not apply to Sb121, whose evolution to a routine Mössbauer level was thwarted by an early, incorrect energy assignment for the 37-keV level. The article by Stan L. Ruby should be of considerable use to those interested in the spectroscopy of this nuclide.

With the present volume it is announced that these yearly symposia are to be self-perpetuating. Some comment should therefore be made concerning the need that may be filled by the proceedings. Rather good introductions to Mössbauer spectroscopy are available elsewhere for those interested in entering this area of research. Further, the Mössbauer technique is now commonly employed as a routine tool in part of more general studies; so there may be a tendency toward a collection of widely separated applications of a topical nature and of

uneven quality. Nevertheless a yearly symposium guarantees an available forum for the inevitable break-through and if strong editorial efforts are made to achieve a successful balance between research and applications, the series has the potential of becoming something of a yearbook for the field. The present volume, however, has not yet achieved this distinction since the majority of material it contains is also available in conventional research journals.

H. H. Wickman is a member of the technical staff at Bell Telephone Laboratories, Murray Hill, New Jersey. He is engaged in research employing Mössbauer spectroscopy and magnetic resonance techniques.

## With a Lagrangian background

ELEMENTARY PARTICLES AND THEIR CURRENTS. By Jeremy Bernstein. 322 pp. W. H. Freeman, San Francisco, 1968. \$12.00

#### by Ciaran Ryan

The idea of organizing a book on elementary particles around the notion of currents was indeed timely. As anyone who knows the subject even remotely will be aware, currents have come to play an increasingly dominant role in elementary-particle physics during the last ten years. It is therefore welcome news that an attempt has been made to present this aspect of elementary-particle theory in a systematic manner.

There are, of course, more things in life than currents and in particular there are particles. Hence, this book is as much concerned with particles as with currents. In fact some of the best things in the book have to do with matters of general field-theoretic character, such as the discussion of gauge invariance in the coupling between the photon and a vector meson and the drawing out of the implications of various strong-interaction Lagrangians. This is very much as it should be, for currents can only be properly understood when seen against their proper background, which is Lagrangian field theory.

The book opens with a discussion of the connection between currents and gauge transformations of field operators, which is followed by an application of these ideas to the gauge trans-