stalled this kind of source in their accelerator at Wisconsin.⁶

To make their spin filter the Mc-Kibben group adds an rf field at a frequency corresponding to the energy difference between 2S atoms with $M_J = +1/2$ and -1/2. An equilibrium mixture of these states in which all atoms have a particular nuclear-spin state remains in the emerging beam. Other metastables fall into the ground state. By varying the longitudinal magnetic field, they can unambiguously select the nuclear spin that remains in the beam.

In the race for the best beam, proponents of the Lamb-shift devices show some confidence that they will outdo the conventional scheme. On the other hand, their optimism is tempered by realization that the conventional system is improving too. Whichever wins, experimenters will

have their probe for observing spin dependence.

Meanwhile Donnally is at work on an entertaining by-product. A polarized-electron source may be available by letting collisions detach electrons from the polarized metastables.⁷

References

- J. L. McKibben, G. P. Lawrence, G. G. Ohlsen, Phys. Rev. Letters 20, 1180 (1968).
- W. E. Lamb Jr, R. C. Retherford, Phys. Rev. 79, 549 (1950); E. K. Zavoiskii, Sov. Phys.—JETP 5, 603 (1957).
- L. Madansky, G. Owen, Phys. Rev. Letters 2, 209 (1959).
- B. L. Donnally, T. Clapp, W. Sawyer, M. Schultz, Phys. Rev. Letters 12, 502 (1964).
- B. L. Donnally, W. Sawyer, Phys. Rev. Letters 15, 439 (1965).
- T. B. Clegg, G. R. Plattner, L. G. Teller, W. Haeberli, Nucl. Instr. Methods 57, 167 (1967).
- B. L. Donnally, W. Raith, R. Becker, Phys. Rev. Letters 20, 575 (1968).

A Visit to the Semiconductor Institute in Leningrad

One of the leading Soviet centers for solid-state physics is the Semiconductor Institute in Leningrad, which has 170 scientists and 800 employees. When we visited the Institute shortly after attending the ninth International Conference on the Physics of Semiconductors, we talked with institute director A. R. Regel, one of the conference vice-chairmen. He told us of research and development activities and explained how the scientific soviet helps run the institute.

A. R. REGEL is director of the Semiconductor Institute in Leningrad.

Research. V. N. Bogomolov, D. N. Mirlin and I. I. Reshina reported at the conference that they had observed polaron absorption in rutile crystals. Although many-body theory predicts the existence of polarons, experiment had not conclusively identified them.

The Leningrad experimenters shine an infrared beam on the sample and observe the optical absorption as a function of frequency. Even though they varied number and types of donors by changing the doping (using lithium, phosphorus, chromium or niobium), the absorption spectra kept the same broad shape with a maximum at about 0.8 eV; so the group concludes that the spectra are due to the interaction of light with the current carriers.

According to polaron theory, if you apply light of the appropriate frequency, electrons are no longer free, but must interact with a lattice phonon at the lattice vibration frequency; hence absorption increases. One can think of a polaron as an electron with virtual phonons surrounding it. Bogomolov and his collaborators find their experiment agrees well with the theory of small-radius polarons (rather than that for large-radius polarons).

At the conference G. E. Pikus and A. G. Aronov discussed a theory of interband anisotropic electroöptical effects and of the Faraday effect in crossed electric and magnetic fields, See at BOOTH 185 — APS SHOW in February

Solid State Beam Current Integrator For Complete Data Acquisition

- ☐ Extremely low input impedence.
- 10-3 to 10-10 amps full scale in eight decade steps.
- ☐ Absolute full scale integration accuracy 0.01%.
- ☐ Integration linearity better than 0.01%
- ☐ Integration reproducibility 0.001%.
- Excellent long term stability.
- No zero offset adjustment required.
 SEND TODAY for full information, giving options and prices.

TOMLINSON RESEARCH INSTRUMENTS

POST OFFICE BOX 1049 TALLAHASSEE, FLA. 32302 PHONE: 904/576-3151

Now, absolute measurement of <u>low</u> intensity light signals

with the EG&G Spectroradiometer System

EG&G's new series of high sensitivity detector heads allow use of the Model 580/585 Spectroradiometer System for absolute measurements of low intensity, pulsed or CW, light signals. These new detector heads, which incorporate photomultiplier tubes, complement the existing line of vacuum tube detector heads by providing approximately five decades of additional system sensitivity.

The Model 585-66 Detector Head encompasses a spectral range from 200-750 mu (ultraviolet-visible) and senses irradiant powers as low as 9×10^{-13} watts/cm²-mu and irradiant energies as low as 9×10^{-13} joules/cm²-mu at 450 mu.

The Model 585-63 Detector Head is now contained in a thermoelectrically cooled chamber (using EG&G thermoelectric modules) to minimize thermionic dark current and the resultant noise.

A separate controller unit assures constant chamber temperature. With a spectral range from 700-1200 mu (near infrared), the 585-63 detects irradiant powers as low as 5 x 10⁻¹² watts/cm²-mu and irradiant energies as low as 5 x 10⁻¹² joules/cm²-mu at 800 mu.

The new detector heads are provided with a regulated power supply and an internal calibration feature to ensure a stable sensitivity. Utilizing standards traceable to NBS, a complete 580/585 Spectroradiometer System is calibrated to its sensitivity versus wavelength thereby permitting absolute irradiant measurements of both continuous and pulsed (as fast as 1 ns) light sources.

Energy and average power measurements are obtained directly from the multi-decade meter of the Indicator Unit or from an external recorder.

Provision is also made for output to an

oscilloscope for pulsed sources.

Applications with the new high sensitivity detector head include measurements of phosphors, chemical reaction, electroluminescence, emissivity and reflectivity of surfaces, biochemical analysis, and other low level signals.

If you'd like more information on the EG&G Spectroradiometer System, or for that matter on any of our products, such as thyratrons, krytrons, spark gaps, flash tubes, thermoelectric modules, transformers, chokes, trigger modules, photodiodes, picoammeters, flash and strobe equipment, or light instrumentation, write: EG&G, Inc., 161 Brookline Ave., Boston, Massachusetts 02215.
Tel: 617-267-9700. TWX: 617-262-9317. On west coast, telephone 213-464-2800.

FC.C

ELECTRONIC PRODUCTS DIVISION

NEW ACCESSORIES AVAILABLE INCLUDE A TELESCOPE AND FIBRE OPTIC PROBE

when electric fields are very intense. V. P. Zhuze and his collaborators are making semiconducting solid solutions of rare earths mixed with tellurium, selenium or sulfur.

Using low-energy neutrons from the Ioffe Institute reactor, M. M. Buedov, B. A. Kotov and N. M. Okuneva are studying thermal lattice vibrations. They have obtained a distribution of thermal vibrations for many simple materials such as silicon, germanium, sulfur, selenium, tellurium and lead.

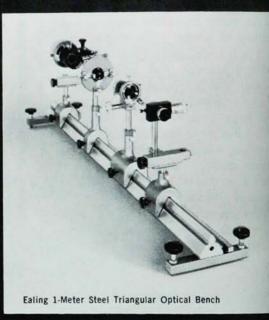
Applications. G. B. Dubrovsky and his collaborators have built attractive alphanumeric display devices from diodes made of silicon carbide. Soviet physicists trying to build experimental display systems from semiconductors have emphasized silicon carbide, unlike Western workers, who put most of their money on gallium phosphide, gallium arsenide, and their alloys. Silicon carbide may have advantages: It has many crystalline forms, a wide variety of energy gaps ranging from 2.2 to 3.1 eV (higher than those of gallium arsenide and gallium phosphide), and is capable of operating at higher temperatures. However, growing large, pure crystals is very difficult. But the crystals displayed at the institute, which came from a central crystal plant in Moscow, were larger than a centimeter across. The experimenters said that some silicon-carbide diodes converted electrical energy to light with an impressive efficiencybetter than 1%. By introducing appropriate impurities the experimenters produce diodes that emit yellow, red or green.

The technical-applications laboratory develops apparatus for medicine and industry. We saw an apparatus for local diathermy of the brain; temperature can be varied continuously. Surgeons use the equipment at -8° C. One device looked like a hat and is used to cool the entire brain. Other equipment included a cataract extractor, which freezes the cataract at -8° C, and a cryostat with a temperature range of -60° C to 60° C.

Soviets in action. Regel explained that the institute is divided into 20 laboratories. He and the laboratory directors form the scientific soviet of the institute, which allocates money for each laboratory. The USSR Academy of Sciences supplies 1.5 million rubles a year, which is 75–80% of the institute budget. Another 20–25% comes

A complete spectrum of laboratory magnets and associated electronic instruments is now being offered by Alpha Scientific.

These include educational and research laboratory magnet systems for NMR, EPR, Solid State, Low Temperature and Magnetic Susceptibility investigations — Analyzing and Deflecting Magnets, Multiport Switching Magnets, Quadrupole Focusing Magnets, Magnetic Spectrographs and Spectrometers used in conjunction with particle accelerators — Special magnet coils, Solenoid Systems and standard or custom Current Regulated Power Supplies.


See us at the A.P.S. Show, Booths 173-174

iend for free brochure.	alpha
Nome	Scientific Laboratories, Inc.
itle	SUBSIDIARY
Organization	SYSTRON SD DONNER
ddress	CORPORATION
ot 9	460 Roland Way, Oakland, Calif. 9462 Phone (415) 635-2700

Optical Benches for Every Need

Chances are, Ealing has the optical bench that will best meet your needs, along with the variety of accessories that will suit your applications.

TEN distinct types of optical benches are offered by Ealing (including the three shown); they range from the economical triangular benches to the finest high precision research benches.

Most are available in various lengths, some up to 10 meters, and in granite, steel, or aluminum.

All have a large selection of accessories, most being interchangeable.

Write or telephone us today for full information on our optical benches, accessories and other Ealing optical products. Rudolph Lindich (617) 491-1515.

Write for your copy of the new 1968-69 Ealing Optical Services Catalog — (over 2000 items)

THE EALING CORPORATION
Optics Division
2225J Massachusetts Avenue
Cambridge, Massachusetts 02140

to the institute from Soviet industry. The institute soviet decides how 80% of the academy money should be spent, and Regel uses the remainder to fund new projects and give further support to existing ones (usually in consultation with the soviet). Technically Regel has the final say on time and money allocations, with the soviet acting as his adviser. Regel says they usually agree.

The industry income is shared by the institute and the industry-oriented laboratory; typically 1/3-1/2 of it goes to the institute. Besides paying for the institute's services, industry supplies materials and equipment. Although the institute manufactures some items, such as thermoelectric refrigerators, generators and photoelements, most of the time the institute's product is ideas; then the institute and industry collaborate on development. Regel pointed out that at larger institutes money can be allocated by individual laboratory directors, and there may be several scientific soviets.

At the Lebedev Institute in Moscow, which has 1000 scientists (PHYSICS TODAY, November, page 57), Nikolai G. Basov told us that they have five scientific soviets, each of which has about 18 members. Income from the Academy of Sciences is assigned to individual laboratories; each soviet decides how much money will go to a specific project in a laboratory. To increase a laboratory budget, the institute must apply to the academy itself.

The Semiconductor Institute was the last to be founded by A. F. Ioffe, for whom the Physicotechnical Institute in Leningrad is named (PHYSICS TODAY, December, page 51), and he was its first director, from 1954 until his death in 1960.

The institute occupies three ancient buildings, scattered over Leningrad. We visited the main building, home of the French embassy before the revolution, and found the view more impressive than the interior, which was never intended to house scientific apparatus. Regel hopes, however, that the institute will be in a new building by 1970.

We had heard that Soviet physicists are more open in criticizing the work of others than is customary in the US, for example, and Regel agreed that this is so. He feels that such criticism is essential for high-quality research. —GBL□

using lock-in detection?

The BROWER Light Beam Chopper gives you instant selection of any chopping frequency with unequalled stability — 0.5 to 3000 Hz ± 0.5 percent. Model 312 chopper combines the versatility of a dc motor with the stability of a synchronous motor — and it works with any lock-in amplifier.

Here are some unique features:

- Instant interchangeability of blades opaque or mirrored.
- Smooth, silent operation no gears, belts or pulleys.
- Oversized blade design to simplify optical set-up.
- Tandem facility two choppers lock together for double beam operation.

Want to up-grade the rest of your light measuring system to the same high standards of performance? Write or call for complete technical literature on the BROWER family of precision instrumentation — choppers, beam splitters, detectors, preamplifiers, lock-in voltmeters and ratiometers. Tel: 617 899-6515

BROWER LABORATORIES, INC.

237A Riverview Avenue Newton, Massachusetts 02154