been expanded with the help of a Ford Foundation grant. This plan is an attempt to blunt the movement of scientific talent from developing nations by permitting good physicists to spend most of their time at their home institutions and as many as three months a year in Trieste. The associate member, who picks his own period of attendance in Trieste, is paid travel and subsistance expenses, but no salary, while there.

APS Panelists Debate Secret And DoD-Sponsored Research

During the recent American Physical Society meeting in Washington an interested audience of about 600 persons considered "University Research and National Defense." This ranel discussion, chaired by Dale Corson, Cornell, was followed by comments from the floor. The questions at issue were whether the Department of Defense should sponsor university research and whether "classified" research should be conducted on university campuses.

Proponents of classified and DoDsponsored campus research argued that such research is good both for the university and DoD, that integration of a defense department with the rest of society is valuable. Their opponents argued that sponsorship of nonmilitary projects gave the military an inappropriate amount of influence in society and weakened nonmilitary agencies, that such sponsorship was confusing to Congress and the public, that classified research on a campus is a threat to academic freedom and that all students and faculty should have access to and knowledge of what is going on at their own universities.

The first panelist, William C. Davidon, Haverford College, spoke against DoD sponsorship and called for "truth in packaging of scientific projects." Richard L. Garwin, of IBM and Columbia, held, however, that unclassified DoD-sponsored research, subject to free publication and free availability of work, serves four useful purposes. It produces improvements and cost savings in defense systems. It trains scientific personnel in fields particularly significant to DoD. It offers a basis for inventions. It supports basic sciences.

John O. Rasmussen, Berkeley, argued that classified research no longer belongs on campuses. Old procedures

and habits persist from wartime, he said, and impose communications barriers, especially with visiting foreigners. He emphasized that only four of 1100 AEC contracts at universities involve classified work as do about 140 of 4200 DoD contracts. Moving even the remaining classified projects away to off-campus laboratories might strengthen both classified and unclassified research. He disputed the argument that some classified research must go to universities because universities have inherent superiority over government laboratories in recruiting talent required for classified research.

The session did not strike the kind of fire that shone at the January APS meeting discussing the Schwartz amendment to permit resolutions on "any matter of concern to the Society." Perhaps one reason was that panelists did not represent opposite poles of the argument. No one officially represented DoD, and John A. Wheeler, Princeton, who was to have stated the case for classified research on campus, was unable to attend. In his place someone read a statement of Princeton policy that he had submitted. Only one panelist was a fulltime faculty member at a large university involved in much classified and unclassified research.

Many participants appeared to be satisfied with the present status and with many stated university policies against accepting classified research except under unusual conditions. Jay Orear, Cornell, called attention to reëvaluations of position that have occurred at several universities. One speaker opposed what he called "a certain absolutism" in the arguments, and suggested decoupling two issues: dissatisfaction with the Vietnam war and concern with classified and military research.

Branscomb, 5 Associates to Edit Reviews of Modern Physics

Reviews of Modern Physics will undergo major changes in structure and leadership during the next few months. The editor will have "augmented authority and responsibility for the assembling of review material," and he will be assisted by five salaried associate editors, working part time, each responsible for an area of physics.

Editor-elect is Lewis M. Branscomb, 41, chairman of the Joint Institute for Laboratory Astrophysics in Boulder;

THE SOCIETY OF PHYSICS STUDENTS was founded on 22 Apr. 1968 with the signing of articles of agreement by representatives of the American Institute of Physics and Sigma Pi Sigma, the national physics honor society. The new society is a union of the AIP Student Sections and Sigma Pi Sigma. H. William Koch, AIP director, and Marsh W. White, founder and president of Sigma Pi Sigma, complete the signing with a handshake. Looking on are (left to right) Wallace Waterfall, AIP secretary, Vincent E. Parker, AIP executive committee member and Cecil Shugart, executive secretary of Sigma Pi Sigma. White will continue as president of the new society and Shugart will direct the society's operations as a full-time employee of the institute.

CANBERRA ANNOUNCES ...

ITS NEW DETECTOR DIVISION ... AND CATALOG

Large volume high resolution Ge (li) detectors housed in an all-new vacuum tight cryostat. If you need efficiency and resolution, write for our NEW catlog today.

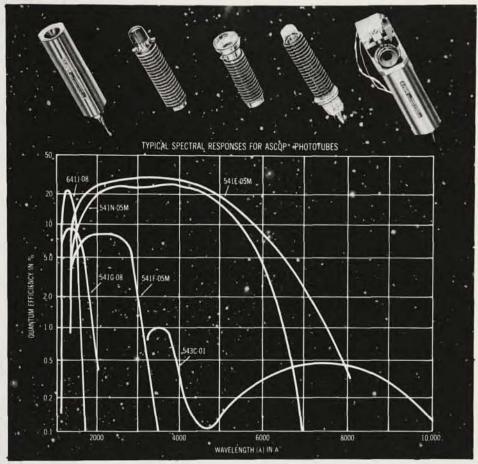
CANBERRA INDUSTRIES

50 SILVER ST., MIDDLETOWN, CONN. 06457

He succeeds Edward U. Condon, the editor since 1957, who asked last year to retire but agreed to stay on during the transition. The two men are colleagues at JILA and they have worked together before on Reviews of Modern Physics; Branscomb served on the board of editors during 1966-67.

Branscomb will serve as editor-elect of *Reviews of Modern Physics* for the remainder of this year and will assume full responsibility as editor with the January 1969 issue. He remains editor through the end of 1973,

The five associate editors are Solomon J. Buchsbaum, Bell Telephone Laboratories, for plasma physics; J. David Jackson, professor at the University of California at Berkeley, high energy physics; Arthur K. Kerman, professor at Massachusetts Institute of Technology, nuclear physics; James Krumhansl, professor at Cornell University, solid state physics; and Robert Novick, professor at Columbia University, atomic and molecular physics.


The reorganization was approved by the Council of the American Physical Society during its Washington meeting. The council indicated the basic standards for the Reviews remain unchanged: complete, scholarly reviews rather than original research not yet exposed to critical comment and state-of-the-art reviews and data compilations that do not contain critical evaluations and discussions of the underlying physics.

Branscomb told PHYSICS TODAY he is considering paying authors for their reviews, although he may not make a decision for a year or two. He is interested in reimbursing expenses, and will also try to persuade institutions to help in offsetting expenses and in providing services such as help with bibliographies and data retrieval.

He said he wants articles to be "broad, scholarly, definitive, and complete." The *Reviews* publishes some 40 papers a year, he noted, and therefore should strive for broad appeal. Branscomb particularly wants substantial introductions to papers that would give all the necessary references.

Branscomb expects help in selecting topics for review and suitable authors not only from his associate editors but from the American Physical Society divisions. One division already has suggested that when its program committee makes selections for an invited symposium, it identify papers it feels

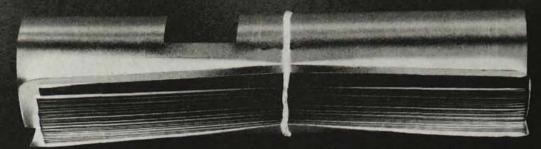
A family of rugged multiplier-phototubes that spans the optical spectrum

The unusually wide selection of photocathodes and window materials offered in EMR multiplier phototubes permits tailoring a special response characteristic to virtually any spectral region of interest. These characteristics, coupled with extreme resistance to hostile environmental conditions, have created a unique place for them in fields as diverse as deep space spectrometry and geophysical research.

A proprietary "vertebrate" tube structure allows ratings of up to 100 G shock, and individual specimens have withstood 500 G in actual tests. Certain types are rated for operation at temperatures up to 150°C. EMR developed manufacturing techniques yield quantum efficiencies up to 30%, depending upon photocathode, and typical anode dark currents as low as 10-12 A.

Specialization in photoelectronics, and experience with successful NASA and industry programs requiring ultimate system performance, demonstrate the EMR capability for solving unusual and challenging photoelectric problems, too difficult for conventional equipment.

For an engineering approach to your photoelectric project, a discussion of means with EMR may prove productive. Why not talk it over now?


PHOTOELECTRIC DIVISION

ELECTRO-MECHANICAL RESEARCH, INC. . BOX 44 . PRINCETON, NEW JERSEY 08540

- Regional Sales Offices -

Telephone: DENVER 303*789-1834 • LOS ANGELES 213*670-7012 NEW YORK CITY 516*724-3377 • WASHINGTON, D.C. 301*588-3122

Everyone has <u>specifications</u> for a pulse height analyzer.

We have the <u>analyzer</u>. The 2200.

Ready to ship. Over 200 in use. There's good reason.

would be right for Reviews of Modern Physics. The Reviews editors would evaluate the suggestions. Then the division would join the editors in approaching the selected authors.

New Chairman and Members Named to AIP COMPAS Committee

H. Richard Crane, professor and chairman of the physics department at the University of Michigan, became chairman of the Committee on Physics and Society (COMPAS) of the American Institute of Physics during the Washington meeting of the American Physical Society. He replaces as chairman John A. Wheeler, professor of physics at Princeton.

Since its inception last summer, compas has documented the decline of federal support for research in physics and astronomy departments that grant doctoral degrees, and has taken a position against the drafting of physics students.

The committee lost one of its charter members with the death of Alan T. Waterman. Named to the committee was Margaret Mead, the anthropologist, who is curator of ethnology at the American Museum of Natural History in New York.

Also named were alternate delegates for three of the members: Morton F. Kaplon, professor and chairman of the physics and astronomy department, University of Rochester, for Robert E. Marshak; Ward Whaling, professor of physics at California Institute of Technology, for Robert F. Bacher; and Albert M. Clogston, physicist at Bell Telephone Laboratories, for William O. Baker.

OSA Names Officers, Prepares Journal, Announces Relocation

The Optical Society of America has announced that A. Francis Turner, head of the optical physics department of Bausch & Lomb, Inc., is the new OSA president and Karl G. Kessler, chief of the atomic-physics division of the National Bureau of Standards is president elect. New members of the board of directors, elected for terms of three years, are Bruce H. Billings of the Aerospace Corp., Donald R. Heriott of Bell Telephone Laboratories and King T. McCubbin of Pennsylvania State University.

In addition, the OSA has prepared

BROAD BAND RF AMPLIFIER and SOLID STATE MULTIPLIER

Rate High Acceptance . . .

At Brookhaven AGS: In service since 1964—a broad band, doubly tuned, planar triode amplifier cavity system, pulsed by a hard tube modulator of variable pulse width and amplitude.

Frequency: 2846 to 2866 MHz Power Output: 500 Watts Bandwidth: (-3.0db) 26 MHz

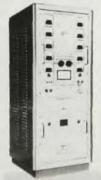
Input, Output Impedances: 50 ohms, nominal

Gain: 9.0 db minimum

User reported in July '67 'Review of Scientific Instruments' that "we have selected a triode amplifier rather than a TWT or klystron because of its inherently better phase stability and smaller sensitivity to plate voltage variation."

At Harvard University: A 10X solid state multiplier with a step recovery diode was produced by MCL in October, 1967 and placed in service. Its characteristics were as follows:

Output Frequency: 1450 MHz Power Output: 400 MW Power Input: 2.0 Watts Efficiency Rating: 20%


This unit has given more than satisfactory service since it was installed last year, according to the user.

Get The Same MCL Engineered Reliability For Your Project From These Outstanding Items . . .

BROAD BAND AMPLIFIER CAVITIES

Give maximum utilization of the gain-bandwidth product, VHF through S-Band. Bandwidth more than double ordinary cavities. Flat-top response affords easy cascading, minimum reduction in overall system bandwidth. Excellent phase stability, linearity. Compact. Power outputs: milliwatts to kilowatts. Can be substituted for TWT or klystrons in some applications.

RF ADD-ON, TETRODE, KLYSTRON AMPLIFIER SYSTEMS

- 40-18,000 MHz
- 100 W to 200 KW
- CW or Pulse Operation

An exclusive MCL advancement which affords quick, economical modernization of older installations Eliminates clutter; replaces multi-unit lash-ups with neat, standard 19" rack-mounted, high power amplifier systems. Complete with power supply, cooling source, sequential circuitry, fusing and protective interlock.

Write for Catalog and Technical Brochures Describing These and Other MCL "Dynamic Disciplines" Products Including: CW, Pulse Oscillator Cavities * High "Workpower" Cavities * Systems and Subsystems * Pulse Modulators * Test Equipment * Solid State Components * Accessories

MICROWAVE CAVITY Laboratories, Inc.

10 North Beach Avenue La Grange, Illinois 60525 Phone: (312)—354-4350 Western Union Telex: 25-3608