will operate LAMPF. Many of the ideas and circuits for the proton linac are built into the electron prototype, and computer-controlled operation of the prototype was accomplished in March. The prototype will also investigate targeting for LAMPF because thin-target damage is almost identical for the two.

Prospective users of LAMPF will meet at Los Alamos on 20 June, right after the American Physical Society meeting there. Open to all interested scientists, the meeting will include talks by Louis Rosen, R. Ronald Rau (Brookhaven), G. Victor Beard (executive director of Associated Western Universities, Inc), George Igo (Los Alamos), Ken Crowe (Berkeley), Vernon Hughes (Yale).

An organizing committee will be elected to draft a charter for the users' organization and to submit a list of nominees for office. Election of officers and adoption of a charter will be considered at a future meeting.

Invitations are available from Fred Tesche at Los Alamos. Those who are not US citizens should inform Tesche.

References

- D. E. Nagle, E. A. Knapp, Rev. Sci. Instr. 38, 1583 (1967).
- E. A. Knapp, B. C. Knapp, J. M. Potter, Rev. Sci. Instr. 39, 979 (1968).

The Tale of the Eta (Or More on C Invariance)

The asymmetry that wouldn't go away could almost be the title of a detective novel. This time, however, it describes the latest chapter in the CPviolation story. At the Washington APS meeting, Wonyong Lee and his Columbia collaborators (Mike Gormley, Emile Hyman, Tom Nash, John Peoples, Claude Schultz and Steve Stein) said that they had found a very small asymmetry in the decay of the η meson. If the asymmetry exists, it is evidence for violation of chargeconjugation (C) invariance in the electromagnetic interaction or some other intermediate interaction. Although the effect is small, three-standard-deviations worth, Lee feels their data is very suggestive of C violation. But to really be sure, they will have to do a new experiment.

In the spark-chamber experiment done at the Brookhaven AGS, the Columbia group observed some 40 000 events in which η decayed into π^+ , π^- and π^0 and 8000 decays into π^+ , π^- and γ . They calculated N^+ , the number of events for which the positive pion had more energy than the negative pion, and N^- , the number of events for which the negative pion had more energy than the positive pion. The asymmetry $A = (N^+ N^{-})/(N^{+} + N^{-})$ turned out to be + 1.5% \pm 0.5%. In earlier experiments with 1351 events, Paolo Franzini and his collaborators (PHYSICS TODAY, August 1966, page 71) found $A = +7.2\% \pm 2.8\%$, and a CERN spark-chamber experiment with 10 665 events (PHYSICS TODAY, October 1966. page 85) found $A = +0.3\% \pm 1.0\%$.

Six months after the end of the experiment, Lee still hesitated to announce finding an asymmetry since the effect may disappear with further data. He feels that a more useful approach than quoting a value for A is to look at the experimental points far from the center of their Dalitz plot. These values, where the energy difference between positive and negative pions is large, are more likely to show an asymmetry than those in the middle of the plot.

Hybrid Magnets Will Need Less Power for Same Field

More intense magnetic fields for the same power input can be had by piggy-backing standard water-cooled solenoids with superconducting ones. Plans at Francis Bitter National Magnet Laboratory, MIT, foresee superconducting boosters that could add 100 kilogauss to any of the 25 conventional solenoids now available at the Bitter laboratory. Then, since the laboratory 10-megawatt power supply can be divided into four independently controlled blocks, one can have four simultaneous experiments in 200-kG fields or one experiment at more than 300 kG. With its present equipment the laboratory is limited to one experiment at more than 200 kG and a maximal field of 225 kG.

Superconducting magnets by themselves are useful and economical up to 125 kG even at large bores. At more intense fields, though, cost rises rapidly because one reaches the limiting current for the conductor to remain superconducting. Meanwhile conventional water-cooled coils are cheap at all fields but are limited by the power they require. Thus one operates the

ULTRA HIGH PURITY
CHEMICALS, SPUTTERING
SOURCES, SPECIALTY
ALLOYS...CUSTOM
FORMULATED TO YOUR
SPECIFICATIONS

II-VI COMPOUNDS

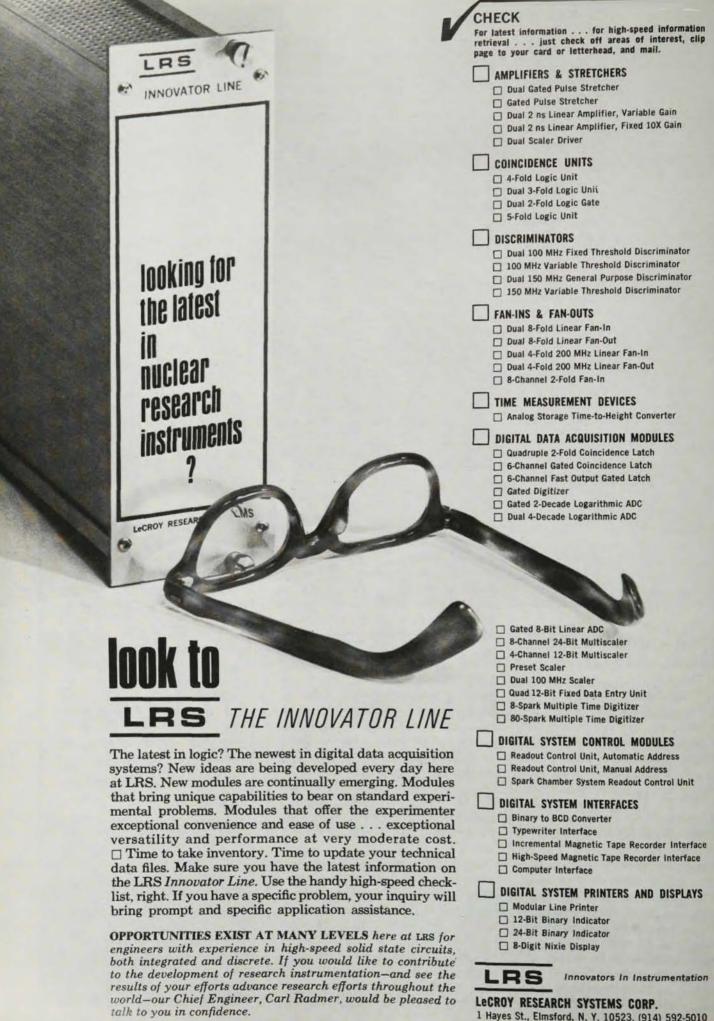
Cadmium Sulfide, Selenide, Telluride. Zinc Sulfide, Selenide, Telluride. Many others. Custom Compounds of II-VIs.

YIG and Gayig Single Crystals

with exceptionally narrow linewidths and a minimum of spurious responses.

METAL SINGLE CRYSTALS

of extremely high purity, in many as grown shapes and sizes. Can be grown, cut, oriented and polished to specification.


If you have an immediate requirement, call collect!

semi-elements, inc.

Saxonburg Boulevard Saxonburg, Pa. 16056 Phone: 412-265-1581

A Subsidiary of Riker Video Industries, Inc.

1 Hayes St., Elmsford, N. Y. 10523, (914) 592-5010

superconducting coil at its economical limit and puts inside it a conventional coil for the advantages of both.

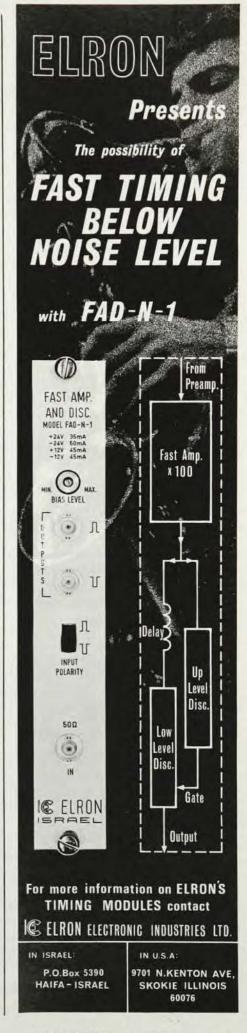
A hybrid system chosen for initial development will have a water-cooled insert producing 165 kG from a 5-MW input surrounded by a 40-cm-bore 60-kG superconducting coil. The combination will make 225 kG for half the power now required. The laboratory expects to see it in operation this year.

Forces between the two coils make matters difficult. An axial displacement from equilibrium would produce 3600 kg/cm of displacement. The makers must prepare also for an unstable radial force of 550 kg/cm of displacement. Moreover the system must withstand any displacement of the equilibrium caused by partial failure of either coil.

According to plan the superconducting booster for the first system will have 24 double pancakes wound of 2 × 10-mm rectangular conductor that consists of many strands of niobium-titanium in a pure-copper matrix. 5000 meters of conductor will make a coil weighing 700 kg. In usual operation the superconducting coil will produce a constant field, and sweeping will be accomplished with the conventional insert.

Cooling is expensive, too, and the laboratory has plans to make it no more expensive than need be. The cryostat will have 35-cm inner bore, 100-cm outer diameter and 90-cm height. After the coil is installed, the cryostat will be welded closed and supported by spokes like a bicycle wheel. Helium losses will be about 1 liter of liquid per hour with current leads removed and 4-5 liters per hour at full field. When the coil is not in use, helium will be transferred to a 100-liter storage vessel, and a regenerative refrigerator will keep the coil at 20°K.

International Program on Solar-Terrestrial Physics


With the sun waxing out of its quiet years into a period of maximal activity, an international program on solar-terrestrial physics is replacing IQSY, the International Quiet Sun Year program of, 1964-65. Herbert Friedman, head of atmospheric and astrophysics at the US Naval Research Laboratory, is president of the organizing commission, and Edward R. Dyer, a National

Academy of Sciences astronomer, has recently taken over secretary duties. 12 projects are in progress under 12 chairmen. Ten nations are represented by the 29 commissioners and two alternates.

The International Council of Scientific Unions has chartered the Inter-Union Commission on Solar-Terrestrial Physics. IUCSTP, as it is called. has the following membership: seven-member bureau, 18 discipline representatives, two administrative consultants and two representatives (with two alternates) of SCAR (Scientific Council on Arctic Research). Four ICSU unions are involved in the program: the International Astronomical Union, the International Union of Geodesy and Geophysics, the International Union of Pure and Applied Physics and the International Union of Radio Sciences. The bureau consists of a representative from each of these four plus the president, the secretary and a representative of co-SPAR (Scientific Committee on Space Research). Its members come from Czechoslovakia, US, USSR and UK. Other members of the council extend national representation to Canada, France, India, Japan, the Netherlands and Norway.

Solar-terrestrial physics is defined to include solar activity, its influence on interplanetary space and its influence on the earth, its atmosphere and its magnetosphere. Within this subject the following 12 projects have been defined: monitoring of the solar-terrestrial environment, proton flares, disturbances of interplanetary magnetic fields, magnetosphere diagnostics, conjugate-point experiments, electric fields in the magnetosphere, magnetic storms and polar disturbances, low-latitude auroras, basic upper-atmosphere structure, atmospheric dynamics, ion chemistry of D and E regions, sudden ionospheric disturbances.

Talking recently with PHYSICS TO-DAY Dyer explained that the studies are expected to involve several hundred scientists in about 50 countries. It is, he said, a "lower-key IQSY," and it will use many of the observing stations that remain in operation from IQSY. Solar activity appears to be approaching a maximum that will probably occur in late 1968 or early 1969. Meanwhile fucstr is making plans to use satellites, rockets, balloons and observations from the ground to pursue its 12 projects.

