an eigenfunction of more than one component of the angular momentum operator. The absence of degeneracy is a general concomitant only of potentials that possess no singular points, a classic counterexample being the onedimensional Coulomb potential, $-e^2$ |x|, which gives rise to doubly degenerate bound states. The ground state of the hydrogen atom, of course, is an eigenfunction of all components of the angular-momentum operator; this point is probably worth an explanatory phrase in a careful exposition. (Lest we be accused of subtle criticism here, we shall also cite as example the remarkable portrayal of the Stern-Gerlach experiment appearing on page 239, wherein the beam is shown running across, rather than along the gap between the magnet pole faces.)

As written, Fundamentals of Quantum Mechanics is to be used by majors in physics, chemistry and engineering. This brings up an important pedagogical question, even aside from the debatable position that one text on quantum mechanics can equally serve all three disciplines. The question is whether a derivation of the Schrödinger eigenvalue problem is worth 150 pages of preparatory material, especially in view of the fact that the derivation also produces an incorrect equation of motion for state vectors. Indeed, one might well ask if the introductory pages would have been employed better to broaden the quantity and depth of the purely quantum-theoretical discussion. The answer does not come hard if one takes The Feynman Lectures seriously and keeps a watchful eye on the way things are going in quantum physics at the graduate level.

* * *

Garrison Sposito is assistant professor of physics at Sonoma State College in Rohnert Park, Calif.

For a good foundation

CALCULUS WITH ANALYTIC GE-OMETRY AND LINEAR ALGEBRA. By Leopoldo V. Toralballa. 920 pp. Academic Press, New York, 1967. \$11.95

by Peter L. Balise

For a good reason, most current introductory calculus books espouse rigor. This text is not only in accord, but perhaps advances the trend. Evidently the book was written for the serious mathematics student, although of course science and engineering students also need a good foundation in mathematics. The author, associate professor of mathematics at New York University, in 1963 published *Theory of Functions*, characterized by a unifying rigor. The present volume is similarly systematic in its approach.

One may compare it with Goodman and with Kline, two other introductory calculus texts that have appeared this year. Toralballa accomplishes more than Goodman in depth and scope, but Goodman seems a more empathic treatment combined with rigor, at least for the average student. Toralballa is in marked contrast to Kline, who emphasizes intuition and physical application. (Kline's book is very attractive to me-an engineer.) However, Toralballa is by no means lacking in the amenities of an introductory textbook: Heuristic arguments accompany the proofs, historical background is provided, and there are appropriate problems in physical terms.

The book contains the usual topics of introductory calculus, but much more is included and in an unusual sequence. Following a review of set theory, the real-number system is treated with a thoroughness that characterizes the entire book. Soon after the derivative is introduced, the integral is given and some applications discussed. Returning to the derivative, the author considers such matters as critical points in a way that should give the student a good background for concepts such as state space. Following typical chapters on plane analytic geometry, elementary functions, series, and derivative and integral applications, there is a rather comprehensive presentation of three-dimensional analytic geometry. Functions of two or more variables and multiple integrals are also included. Linear algebra is treated, with the emphasis on vector space concepts rather than matrix operations although solution techniques are given.

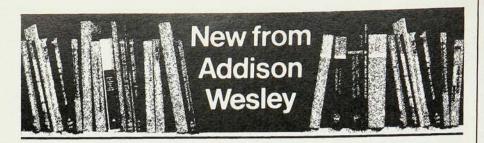
The book is adequately indexed and includes sufficient exercises, some with answers. The preface includes a table of parts to be covered for an average

course, as an alternate to complete coverage for an honors course. The text seems particularly suited for the latter.

* * *

The reviewer, a professor of mechanical engineering at the University of Washington, teaches undergraduate and graduate courses in applied engineering mathematics.

Metals and semiconductors


SEMICONDUCTORS AND SEMIMETALS, Vol. 3: OPTICAL PROPERTIES OF III-V COMPOUNDS. R. K. Willardson, Albert C. Beer, eds. 568 pp. Academic Press, New York, 1967. \$23.00

ATOMIC AND ELECTRONIC STRUCTURE OF METALS. Conf. proc. (Ohio, October 1966). 259 pp. American Society of Metals, Metals Park, Ohio, 1967. \$12.50

by Henry M. Otte

These two books can be appropriately reviewed together although the subject matters do not overlap. Both have two editors (J. J. Gilman and W. A. Tiller in the case of the ASM publication) who assembled twelve articles for each of the books. The areas covered are those of rapidly advancing fields that require the articles to be written by experts or authorities. It used to be that a person only qualified as such by having contributed significantly to the field, but now one is labelled as an expert or authority merely by any editor for whom one is willing to write an article on a familiar subject. Thus although both books are blessed with some contributors who need no introduction, it would nevertheless have added to the value of the books if the editors had included a little about the background of all the authors to justify their choice.

Of the two, the book on the III-V compounds is a somewhat more integrated piece of work. Volume 1 of the series reviewed key features of the III-V compounds, with special emphasis on band structure, magnetic field phenomena and plasma effects. In Volume 2 the emphasis was on physical properties, thermal phenomena, magnetic resonances, and photoelectric effects as well as radiative recombination and stimulated emission.

FOUNDATIONS OF QUANTUM MECHANICS

by J. M. JAUCH, University of Geneva, Switzerland

This advanced text is designed to acquaint the reader with the modern approach to the subject and with the mathematical tools used in this approach. The book, which uses modern mathematical language to a greater degree than is customary in other texts, is chiefly concerned with conceptual foundations rather than applications or approximations. Standard reference material is augmented by results of recent research, conducted in Geneva.

299 pp. \$15.00

UNIVERSITY OF CHICAGO GRADUATE PROBLEMS IN PHYSICS: WITH SOLUTIONS

By Jeremiah A. Cronin, *University of Rochester*, and David F. Greenberg and Valentine L. Telegdi, *University of Chicago*

Designed for self-study, this book is intended to prepare the senior-graduate student in physics for the "qualifying exam" for admission to the Ph.D. degree. Problems are stated and solutions are worked out, often in several ways. There is an emphasis on physical concepts in the solutions proposed. The book is intended to be useful to both U. S. and foreign students. The latter will find it particularly helpful if they intend to pursue graduate studies in America.

263 pp. Hardbound: \$8.50 Paperbound: \$4.95

ADVANCED QUANTUM MECHANICS

By J. J. SAKURAI, University of Chicago

The purpose of this second-year graduate-level text is to present major advances in quantum physics not covered in usual courses in nonrelativistic quantum mechanics. In content the book covers the usual fundamental topics, vis the quantum theory of radiation and the Dirac theory of the electron. In addition, a number of diverse topics are included which are designed to address a wide community of physicists.

336 pp. 52 illus. \$15.00

MATHEMATICAL PHYSICS

By Eugene Butkov, St. John's University, Jamaica, Long Island

Employing the inductive approach, this graduate-level text and reference presents a classroom-type discussion, includes many cross-references, and makes frequent references to the questions of mathematical rigor. Stress is given to the pedagogical side of the book in order to make it more readable to the student and well suited for independent study.

c. 768 pp. 213 illus. Approx. \$14.75

WAVE PHENOMENA

By Dudley H. Towne, Amherst College

Presenting a unified treatment of transverse waves on a string and acoustic and electromagnetic waves, this text aims at developing the orientation of theoretical physics with a minimal use of mathematics which is not already familiar to the student. The book stresses the mastery of certain mathematical techniques, emphasizing the wave properties common to sound and light and showing how the mathematics unifies diverse physical situations.

482 pp. 188 illus. \$12.50

INTRODUCTION TO NUCLEAR PHYSICS

By HARALD ENGE, Massachusetts Institute of Technology

This book gives the student an introduction to one of the most important areas of modern physics. In a complete and up-to-date presentation, the book treats two-body problems, properties of stable nuclei, nuclear models, disintegration of unstable nuclei, nuclear reactions, nuclear power, and elementary particles. Experimental facts are followed by the presentation of theory and comparisons.

582 pp. 281 illus. \$13.50

For further information write Dept. A-109

Addison-Wesley
PUBLISHING COMPANY, INC.
Reading, Massachusetts 01867

THE SIGN OF EXCELLENCE

The present volume is concerned with optical properties, including lattice effects, intrinsic absorption, free-carrier phenomena and photoelectronic effects. Volume 4 will include thermodynamic properties, phase diagrams, diffusion, hardness, and phenomena in solid solutions as well as the effects of strong electric fields, hydrostatic pressure, nuclear irradiation, large impurity concentrations, and nonuniformity of impurity distributions on electrical and other properties of III-V compounds. Much of the information presented is intended to be of permanent value.

While this sequence of volumes is thus primarily a reference work covering related major topics and possibly also of use in graduate courses, the ASM book is aimed at the educational interests of the metallurgists and is of ephemeral value. The authors review essentially advances made during the past five years in the theoretical calculation and to some extent in the experimental determination of the electronic structure and properties of metals and alloys. Emphasis is on the noble metals.

Of some note is that nearly all the articles in both books are, contrary to current trends, authored by only one person. Both books have a subject index, but the one in the Academic Press publication appears more comprehensive; in addition, it also has a useful author index. Both books are reasonably priced for current standards and in terms of what they offer.

The reviewer is manager of the materials research laboratory, Martin Marietta Corp., Orlando, Fla.

Positional astronomy

PRINCIPLES OF ASTROMETRY: WITH SPECIAL EMPHASIS ON LONG-FOCUS PHOTOGRAPHIC ASTROMETRY. By Peter Van de Kamp. 227 pp. Freeman, San Francisco, 1967. \$6.50

by Herbert Malamud

Peter Van de Kamp, of the Sproul Observatory, is a leading authority in the field of astrometry. This book is the first general introduction to the field available in book form. Since the po-