atoms relaxes to about 100 eV. If a collision sequence intersects the surface before it runs out of steam an atom may be ejected, with a maximal energy related to the energy needed to start the focused-collision sequence.

In their experiments Politiek, Rol, Los and Ikelaar used a rotating velocity selector and platinum-tungsten alkali-beam detector to record the intensity and velocity distribution of their potassium beam; they measured a peak current of 2.5×10^{-13} amp and an energy range of 0.5--45 eV (velocity $1000\text{--}15\,000$ meters/sec).

2nd ESRO Satellite Of Year To Study Polar Ionosphere

The second satellite launched by the European Space Research Organization this year achieved polar orbit 3 Oct. Eight experiments on board the 84-kg craft are measuring energies and angles of particles striking the polar ionosphere, the resulting projection of visible light, and changes in the electron and ion density and temperature distribution.

Experiments were prepared in Norway, Sweden and the United Kingdom. Other ESRO members are Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain and Switzerland (Norway is not a member). Prime contractor for the satellite was the Laboratoire Central de Télécommunications, a French associate of International Telephone and Telegraph. NASA launched it with a four-stage Scout rocket from Lompoc, Calif.

Originally scheduled for launch in 1967, the satellite is known as ESRO I (it has been renamed Aurora since launch). ESRO IIA, launched 29 May 1967, was lost in the South Pacific when the third stage failed. ESRO

IN BRIEF

Three more pulsars have been added to the catalog by teams at Arecibo and Jodrell Bank. The Arecibo group found the tenth (with a period of 0.56 sec) in late August and the 11th (period 0.53 sec) in late September. The 12th, Jodrell Bank's first, was reported in late October to have a 0.36-sec period.

A 500-keV electron microscope went into operation at the University of Virginia 3 Oct. The School of Engineering and Applied Science will use the RCA instrument in materials science, medical studies, chemistry and physics.

A satellite with infrared and visiblelight cameras has been proposed by the Interior and Agriculture Departments to provide information on the distribution of vegetation, surface and ground water. Future remote sensors would include radar and microwave spectrometers.

Calibration service for measuring effective noise temperature of noise sources in four additional waveguide sizes are now available from the Radio Standards Engineering Division of the National Bureau of Standards in Boulder. The long dimension of the rectangular cross sections of the waveguides (and their frequency range) are 7.2 cm (2.60–3.95 GHz), 1.9 cm (10.0–15.0 GHz), 5.8 cm (3.30–3.95 GHz)

and 2.8 cm (8.2-10.0 GHz).

Notre Dame University has begun research with its 15-MV FN tandem Van de Graaff accelerator. The National Science Foundation funded the purchase from High Voltage Engineering Corp.

A cryogenic-flow research facility has been established in the metrology division of the National Bureau of Standards. A cryogenic flow loop with dynamic gravimetric mass flow calibration allows study of fluid metering over a wide range of temperatures and pressures.

Effects of severe earthquakes and volcanic eruptions on a small Antarctic island will be measured this month by US scientists operating from a new research vessel, the Hero. Other programs planned for the Antarctic summer just beginning include analysis of the physical properties and crystal structure of 2165meter ice cores, measurement of cosmic-ray flux, and studies of gravitational and magnetic fields.

Correction: Lawrence Radiation
Laboratory at Livermore is negotiating to purchase a tandem accelerator as part of a "Cyclo-Graaff" combination, and the tandem is expected to be operational in late 1970. An earlier report (Physics Today, September, page 75) said the tandem already existed.

TIRED OF WAITING FOR YOUR GE(Li)?

- Fed up with broken promises from "Do-it-yourself" detector makers at your lab?
- How long have you been waiting for "Brand X" to deliver?
- Disillusioned with specifications in wide variance with what you ordered?

FROM NUCLEAR DIODES: IMMEDIATE DELIVERY ON STOCK DETECTORS WITH KNOWN SPECIFICATIONS

Get on our distribution list for our bi-weekly published stock list of planars, trapezoidal and true coaxials. Some are already mounted in a variety of cryostats or you may select one of your choice from our catalog. System resolutions range from 2.5 to 6.0 keV for Co⁶⁰. Sizes from smallest planar to largest coaxials. Check the list, pick the performance and price that meet your needs and take delivery NOW.

P.S. Send for a free copy of our new manual "The Selection and Use of Ge(Li) Detectors."

NUCLEAR RADIATION INSTRUMENTATION

complete, integrated Harshaw/Hamner systems or components for today's most advanced disciplines

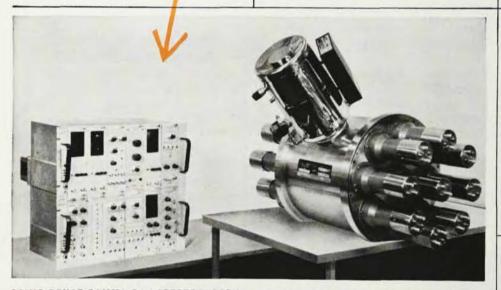
Today's physicists, working over a broad range of endeavors, will be interested in Harshaw's broad new capabilities. From crystals and solid state detectors to complete downstream electronics, you can select with confidence from the Harshaw line.

NUCLEAR SPECTROSCOPY

Ge(Li) detection systems
NaI detectors
Si surface barrier detectors
BF₃ & He³ gas filled detectors
Electronics

amplifiers preamplifiers voltage supplies time-logic circuits pulse shaping circuits coincidence systems

X-RAY SPECTROSCOPY


X-ray scintillation detectors Scintillation specials Electronics

> PHA systems amplifiers and preamplifiers voltage supplies scaler-timers

HIGH ENERGY PHYSICS RESEARCH

Cerenkov materials
Organic scintillators
Inorganic scintillators
HEP modular logic series (200 MHz)

- Discriminators
- Stretchers
- · Prescalers · Logic & Gate Interfaces
- Fanouts Logic & Trigger Units
- Score Cards Dual Coincidence
 Fast coincidence systems

COINCIDENCE GAMMA-RAY SPECTROSCOPY We put our NaI(TI) crystals together with our Ge(Li) detectors and let our Hamner electronics monitor the action. The action can be coincidence, anticoincidence or pair spectroscopy. And, we'll test the whole system for you before shipping.

Testing and giving you a copy of the data is possible because Harshaw supplies the three major subsystems: Ge(Li) detector, NaI(TI) crystal and Hamner electronics.

Our Ge(Li) detectors mount in the Satellite cryostat making them portable (with 3 days between refills). The detectors are available as planar-, thick planar-, true coaxial-, or five sided coaxial-type in active volumes to 45 cc. Total system resolution from 2.5 to 4.0 KeV (fwhm) for Co⁶⁰ at 1.333 MeV.

• The NaI(TI) crystal shown above is $13\frac{1}{2}$ " diameter x 12" long. It has two optically isolated 6" sections, each with nine 3" photomultiplier tubes. This crystal has a $2\frac{1}{2}$ " well for the Ge(Li) detector. And we make smaller crystals, too.

make smaller crystals, too.

Hamner Electronics supplies the preamplifier, the amplifier, power supply, single channel analyzers, bias supply, a pulser for testing and many other combinations and modules. A new two-width timer-scaler (NS-30) can be used in many combinations. Of course, you can pass the information along to your multichannel analyzer.

Harshaw offers you the system, any single component, or any combination of components

NUCLEAR LIFE SCIENCE

Thermoluminescent Dosimetry
thermoluminescence detector
automatic integrating picoammeter
thermoluminescence analyzer
dosimeters

CaF₂Scintillator Flow Cells NaI with wells Single Channel Analyzers

ENVIRONMENTAL SCIENCES

Scintillators

Ruggedized Scintillation Detectors Aerial Survey System Gas Filled Detectors Electronics

amplifiers and preamplifiers voltage supplies scaler-timers time-logic systems coincidence systems

The Harshaw Chemical Company • Division of Kewanee Oil Company
Crystal-Solid State Department

1945 East 97th Street • Cleveland, Ohio 44106 • Phone 216-721-8300

IIB flew 17 May 1968 and continues to send back data on solar radiation and cosmic rays.

Under the agreement signed in 1964, the European organization was to supply both ESRO satellites and NASA was to launch them. ESRO and NASA will exchange all scientific information resulting from the cooperative project and make it available to the world scientific community.

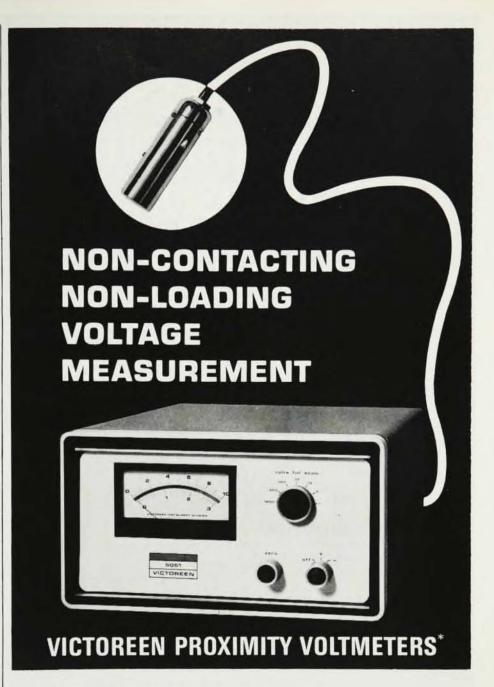
Potentials in Spinning Rotor Follow Dessler Predictions

Jesse W. Beams (University of Virginia) has measured the electrical strains in a fast rotor. His results show that the periphery becomes slightly positive with respect to the axis and appear to agree with the theories of Alexander J. Dessler and colleagues and Conyers Herring rather than those of Leonard I. Schiff and M. V. Baruhill. The subject has become controversial in an effort to calculate the fields experienced by freely falling electrons in a vertical shielding cylinder.

Beams has spun a four-armed rotor up to 650 rotations per second in an evacuated metal case and measured the contact potential that rotation induces with capacitive plates facing the top and end surfaces of the arms; he measures these differences by a null method based on amplification of the signals from charges induced on the plates.

Of course the experiment is delicate and has difficulties: potential differences generated in the liquid-mercury contact to the shaft, compensation of the earth's magnetic field, plastic flow in the rotor, contamination of the rotor surfaces, differential heating between center and periphery by molecular bombardment at 10⁻⁶ torr. Now Beams is at work on a better version (magnetically suspended rotor, materials that can be outgassed, 10⁻¹⁰ torr) and hopes to get results subject to a clear-cut theoretical interpretation.

References


 J. W. Beams, Phys. Rev. Letters 21, 1093 (1968).

2. A. J. Dessler, F. C. Michel, H. E. Rorschach Jr, G. T. Trammell, Phys. Rev. 168, 737 (1968).

 C. Herring, Bull. Am. Phys. Soc. 13, 240 (1968).

 L. I. Schiff, M. V. Barnhill III, Phys. Rev. 151, 1067 (1966).

5. PHYSICS TODAY 21, no. 7, 71 (1968). □

Range: ±1 to ±1000 volts fullscale

Probes: Model 5051-25 high resolution type, Model 5051-35 high sensitivity type

Victoreen Model 5051 Proximity Voltmeter now makes possible measurement of electrical potentials on surfaces of numerous materials without making physical contact — or loading the source. Compact design of the probe (illustrated) takes full advantage of size limitations imposed in many applications. 100% feedback maximizes insensitivity to probe-surface spacing. Applications are virtually unlimited and include — • Aircraft, missile skins • Circuit boards • Electrets • Electrostatic copy papers • Insulators, dielectrics • Magnetic tapes, transports • Metal, liquid surfaces • Plastics, films • Semiconductor materials • Synthetic fibers, materials

*Pat. Pending

A-957

VICTOREEN INSTRUMENT DIVISION
10101 WOODLAND AVENUE · CLEVELAND, OHIO 44104
IM EUROPE: GROVE HOUSE, LONDON RD., ISLEWORTH, MIDDLESEX, ENGLAND

