equilibrium constant, and applies it to the internal motions of the molecules in an ideal gas. For such motions the two free energies are identical. This reversed approach, perhaps more familiar to chemists than to physicists and perhaps less elegant than Gibbs's, proved its value long ago in the calculation begun by Giauque of thermodynamic from spectroscopic data; the author has carried it much further. The physicist interested in chemical (as contrasted with physical) changes will find it worth his while to become familiar with chapters 2, 3 and 4 even though these presuppose a prior knowledge of the language of chemical thermodynamics.

Among topics directly interesting to most physicists are the classical treatments of ideal and imperfect gases, order-disorder phenomena and liquids, and the quantum treatment of these same substances with emphasis on liquid helium. A chapter of about 40 pages is given over to the solid state, mainly to the Einstein and Debye models. The Debye model for solid argon is carefully tested against experimental data.

A book of this length cannot hope to embrace much of chemical kinetics. The theoretical groundwork for the prospective fusion of this subject with the other two disciplines is laid; but the author considers the calculation of activation energies, an important activity carried forward particularly by Henry Eyring and his coworkers, to be outside the scope of his book. The preëxponential factor in the expression for the rate constant receives Recombination of full attention. atoms, dissociation of diatomic molecules, and unimolecular reactions are the principal reactions discussed, again with careful comparison of theory and experiment.

As this book and numerous related books make clear, modern statistical mechanics has set itself a goal much more ambitious than that of Gibbs, who was faced by difficulties that quantum theory has resolved. The goal might be described as understanding Gibbs's "mysteries of nature" completely enough so that reliable predictions can replace experiments. With computers available, is this a realistic goal? How far along the road are we now? The author's opinion on such general questions would have been valuable.

I believe that this book will prove

difficult for undergraduates. I recommend it strongly for advanced study. Although it does not include some material of particular interest to physicists (for example, a discussion of metals and semiconductors), it may be regarded as required reading for physicists seriously interested in chemical reactions.

\* \* \*

After a long research career in the General Electric Company, Herman Liebhafsky resumed academic work last year and is now professor of chemistry at Texas A & M University. He has been concerned with thermodynamics and kinetics for about 40 years.

### Points for graduate students

DEFAUTS PONCTUELS DANS LES METAUX. By Y. Quére. 236 pp. Masson, Paris, 1967. 80 F.

by Daniel C. Mattis

The topic of point defects in metals is reviewed exhaustively in this volume, one of a series of monographs happily aimed at the graduate student. What in an ordinary book would be a stern collection of formulas and references is here filled out with explanations and derivations that are not only helpful to the student, but help the researcher to understand the limits of validity of the theory being discussed.

The application of each theory to experimental data is carried out in almost every chapter. The reader is provided with an elementary, but adequate, review of elastic theory of defects, atomic models, potential and phase-shift theory, thermodynamics of point defects (equilibrium and metastable) point defect generation, diffusion and effects on electrical and other properties of the metal. author shows a good grasp of the large number of metallurgical and physical disciplines coordinated into the present work. Although one would not turn to this book for authoritative, deep, or new insights into any of the main topics considered, a student would find the book indispensable prior to commencing serious study or research involving point defects. In the preface, the series editors (P. Aigrain, A. Blanc-Lapierre, M. Levy and J. Friedel) state: "We think there is room in France for a new collection of this type, presenting limited

topics which are of up-to-date interest to readers with a good general background in modern physics." I would merely add: there is room for such a collection here too!

\* \* \*

Daniel C. Mattis is professor of physics at the Belfer Graduate School of Science, Yeshiva University, and has done research on several aspects of the physics of metals.

### In the matter of materials

MATERIALS: A SCIENTIFIC AMERICAN BOOK. 210 pp. W. H. Freeman, San Francisco, 1967. Cloth \$5.00, paper \$2.50

by L. Marton

Cyril Stanley Smith, whose outstanding contributions to our knowledge of materials are well known, introduces this volume, a reprint of the September 1967 issue of Scientific American. There is perhaps no better way to characterize his attitude toward the whole subject than by a quotation from the May 1968 issue of Science and Technology. There Smith says: "The discovery of most metals and alloys came out of aesthetic curiosity -not intellectual-and the first beginnings of science led away from the enjoyment of the wonderful qualities of materials; but I think this is now coming back." The lead article by Smith in the present volume gives a delightful introduction with plenty of historical material on the study of materials.

The compilation contains altogether thirteen chapters, each written by an outstanding authority of the subject treated. These chapters are as follow: Smith, "Materials;" Nevill Mott, "The Solid State;" A. H. Cottrell, "The Nature of Metals;" John J. Gilman, "The Nature of Ceramics;" R. J. Charles, "The Nature of Glasses;" Harman F. Mark, "The Nature of Polymeric Materials;" Anthony Kelly, "The Nature of Composite Materials;" John Ziman, "The Thermal Properties of Materials;" Henry Ehrenreich, "The Electrical Properties of Materials;" Howard Reiss, "The Chemical Properties of Materials;" Frederick Keffer, "The Magnetic Properties of Materials;" Ali Javan, "The Optical Properties of Materials," and W. O. Alexander, "The Competition of Materials."

All the articles are very concise,

### Introduction to Modern Physics 2nd Edition, 1969

By C. H. Blanchard, University of Wisconsin; C. R. Burnett, Florida Atlantic University; R. G. Stoner, Arizona State University; and R. L. Weber, The Pennsylvania State University. Provides an introduction to the important ideas and experiments of modern physics. Improvements include reorganization and expansion of the sections on solid state and nuclear physics. "We have put certain sections of classical physics in a review category and have elaborated on some of the mathematical treatment of classical physics in order to present a more detailed quantum mechanical analysis... We expect the text to continue to be an introduction to the important ideas and experiments of modern physics." from the preface to the 2nd edition.

January 1969, approx. 480 pp., \$9.95

Coming in January

### The Physical Sciences 5th Edition, 1969

By W. J. Poppy, Leland L. Wilson, E. J. Cable, and R. W. Wilson, all of University of Northern Iowa. The authors present a thorough up-dating and modernization of a successful physical science text. The new 1969 edition offers general physical science for non-science majors covering the major topics in physics, chemistry, geology, meteorology, and astronomy.

January 1969, approx. 608 pp., \$9.75

Recently published

### Special Relativity and Quantum Mechanics

By Francis R. Halpern, University of California, San Diego. This text approaches relativistic quantum mechanics by representations of the Poincare group. The material is carefully presented and easily comprehensible. It is supplemented by problems that involve working out the implications of the text, and by a discussion of applications of the material.

May 1968, 140 pp., \$4.95

Outstanding Physics Texts from Prentice-Hall

for approval copies write box 903

PRENTICE-HALL Englewood Cliffs, N.J. 07632

### SOLID STATE PHYSICIST

The Materials Science & Engineering Department of our Research Laboratories has a position available for a Solid State Physicist. The successful applicant will be expected to contribute to the basic understanding of magnetic recording materials and the development of new recording media.

Requirements: MS or PhD in solid state physics with a bias toward magnetism. The ability to translate research results in terms of applications technology and experience in the R & D of magnetic materials is desired.

The Franklin Institute is a not-for-profit scientific institution in the heart of Philadelphia, with excellent housing, cultural, institutional and recreational facilities.

Submit resume including salary requirements to:

MR. DOUGLAS M. ROBINS
PERSONNEL DIRECTOR

### FRANKLIN INSTITUTE

Philadelphia, Pa. 19103

An equal opportunity employer

## NE-110 plastic phosphor

Light Output % Width ns Decay Anthracene ns Decay ns Decay 250 4350

for long light path applications. write for data.

NUCLEAR Enterprises Inc.

935 Terminal Way/San Carlos/California 94070/(415) 593-1455 Associate Company Nuclear Enterprises, Ltd., Edinburgh, Scotland clear presentations and could be understood by both the intelligent layman and the research worker. I tried to choose some of them as outstanding examples that please me more than the others and the more I looked, the more I had difficulty choosing any single one. Those that I first selected as less outstanding were found to be equally interesting upon further reading.

L. Marton is an electron physicist with the National Bureau of Standards. He is engaged in the international relations aspects of science.

### NEW BOOKS

#### **ELEMENTARY PARTICLES**

Advances in Particle Physics, Vol. 1. R. L. Cool, R. E. Marshak, eds. 497 pp. Interscience Publishers, New York, 1968. \$18.95

### NUCLEI

Introduction to Nuclear Theory. By I. E. McCarthy. 555 pp. John Wiley & Sons, New York, 1968. \$13.95

Collective Models of the Nucleus. By J. P. Davidson. 238 pp. Academic Press, New York, 1968. \$12.00

### ATOMS, MOLECULES, CHEMICAL PHYSICS

Chemical Applications of Mössbauer Spectroscopy. V. I. Goldanski, R. H. Herber, eds. 701 pp. Academic Press, New York, 1968. \$29.00

Growth of Crystals, Vol. 5A. Conf. Proc. (Moscow, November 18–25, 1963). N. N. Sheftal, ed. 155 pp. Consultants Bureau (Plenum Publishing, New York), 1968. \$17.50

Growth of Crystals, Vol. 5B. Conf. Proc. (Moscow, November 18–25, 1963). N. N. Sheftal, ed. 199 pp. Consultants Bureau (Plenum Publishing, New York), 1968. \$22.50

Growth of Crystals, Vol. 6A. Conf. Proc. (Moscow, November 18–25, 1963). N. N. Sheftal, ed. 182 pp. Consultants Bureau (Plenum Publishing, New York), 1968. \$20.00

Growth of Crystals, Vol. 6B. Conf. Proc. (Moscow, November 18–25, 1963). N. N. Sheftal, ed. 193 pp. Consultants Bureau (Plenum Publishing, New York), 1968. \$20.00

Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry. By C. A. Parker. 544 pp. American Elsevier Publishing, New York, 1968. \$30.00

Chemistry and Physics of Carbon: A Series of Advances, Vol. 4. Philip L. Walker, Jr., ed. 399 pp. Marcel Dekker, New York, 1968. \$20.75

Electron Paramagnetic Resonance:

# New Sperry argon laser takes holography deeper into the third dimension

Sperry Electro-Optics Group announces an argon gas laser that provides both greatly extended coherence length and high CW power output. Availability within 120 days.

That combination means you can get a new dimension in sharp-image holograms. With a depth of field never before possible.

This is what makes it possible: a stabilized single frequency CW power output of 250 milliwatts is combined with coherence length of 1,000 meters to drastically reduce film exposure time and effectively widen the visual field.

In detail, the Sperry laser head measures 48" x 12" x 12" and weighs 220 pounds. It uses a graph-

ite bore laser tube for extended service life. An argon gas reservoir, vacuum gage and precision leak valve are built in to permit convenient refilling of the discharge section of the tube. The tube itself operates in an electromagnet which is water cooled to absorb the radiant heat.

The unit is maintained at any manually-selected output frequency within one of the principal argon laser spectral lines, by means of electronically servo-controlled optical cavities. The power supply assembly provides all required excitation and control voltages for the laser head. Interlocks assure simple, fail-safe operation.



### PERFORMANCE SPECIFICATIONS

SINGLE-FREQUENCY CW POWER OUTPUT
4880 Å or 5145 Å
COHERENCE LENGTH
AMPLITUDE STABILITY
LONG TERM STABILITY
INPUT POWER
SIZE AND WEIGHT
LASER HEAD
POWER SUPPLY

DISCHARGE TUBE WARRANTY
SELF-CONTAINED ARGON REFILLING SYSTEM

.250 watts 1000 meters 2% 50 MHz/hr 208 VOLTS, 3ø, 60 Hz—20 kw

48" x 12" x 12"—220 lb 27" x 24" x 72"—1400 lb

In addition to holography, the Sperry argon laser has applications in Raman spectroscopy, non-linear optics, scattering measurements and heterodyne communications. For additional information and technical data, write: Sperry Gyroscope Division, Electro-Optics Group, Great Neck, New York 11020. Or, if you're in a rush call 516 574-2598.

SPERRY

GYROSCOPE DIVISION

GREAT NECK, NEW YORK 11020

