
A Hundred Years of Entropy
From primitive machines and the discovery of fire came problems of mechanics
and heat. The steam engine brought them forcibly together. Out of
the study of heat-to-work transformations that resulted, came our entropy concept,
and extension of the reasoning has brought useful applications in far-removed subjects
like probability, number theory, information theory and language.

by Mahadev Dutta

PERHAPS THE PARADOX of entropy is

that it has so long a history and yet so
many remaining puzzles. We might
say that the roots of its history go back
even to primitive man. In his struggle
for existence he used crude appliances
and discovered fire. From closer in-
timacy with more and more developed
machines sprang mechanics, and from
fire came the theory of heat; the two
were quite separate sciences.

Only the invention and impact of
the steam engine led to final identifica-
tion of heat and mechanical energy
and thus to the first law of thermo-
dynamics. Experiences with limita-
tions in the heat-to-work conversion
were formulated as the second law of
thermodynamics; its convenient mathe-
matical form is the entropy law. Suc-
cessful applications in various sciences
and in technology quickly proved its
utility as a basic law of nature.

But the inequality in the formula-
tion of the law remains a scientific
curiosity. Many attempts have been
made and are still being made to
analyze the law from many viewpoints:
axiomatic, mechanical, statistical-me-
chanical and purely statistical. Among
the results of such studies are Bose-
Einstein and Fermi-Dirac statistics,
which are of fundamental significance
throughout physics.

In communication theory C. E.
Shannon, in 1948, used entropy in a
completely new context. He defined
it for any random process. Out of this
definition grew information theory.
Shannon's general definition also
opened new applications in other fields
of human knowledge. In probability
theory, it yields a method of statistical
estimation. In logic it is used in the

discussion of probabilistic inferences.
In linguistics even the entropy of a
language is defined. In mathematics
the entropy concept has been intro-
duced in abstract analysis, approxi-
mation theory and number theory.

Successful applications of the notion
of entropy in different fields have es-
tablished the usefulness and generality
of the concept, which was originally
introduced as the basic concept of
thermodynamics and had its applica-
tions mostly in some branches of
physics, physical chemistry and me-
chanical engineering.

Background

Many great scientists have contributed
to this history. Through the work of
Galileo Galilei (1564-1642) and Isaac
Newton (1642-1727) mechanics took
shape. In this form mechanics was
widely accepted after the elegant for-
mulation by Joseph Louis Lagrange
(1716-1813) and the extensive calcu-
lations of its various applications in
celestial mechanics by Pierre-Simon
Laplace (1749-1827). Gottfried Wil-
helm Leibnitz (1646-1716) con-
sidered different forms of mechanical
energy and its conservation.

Meanwhile experiences with fire and
heat grew in bulk and were known as
the "theory of heat," but until the
middle of the last century the theory
was mainly speculative.

When James Watt made his steam
engine in 1765, people began to
think of the relations between thermal
energy and mechanical energy. Just
a little earlier, in 1747, some physiolo-
gists, of whom Albert Haller was a
pioneer, advocated the friction of blood
flow as the source of body temperature.

Then, after Watt, experiments of Ben-
jamin Thompson (1798), who became
Count Rumford, James Prescott Joule
(1840) and their contemporaries led
to recognition that heat is a form of
energy and to the principle of con-
servation of energy (Robert Julius
Mayer's principle or the first law of
thermodynamics).

Mechanics joins heat

With the unification of these two sepa-
rate streams of human experience, the
theory of heat had the proper scien-
tific form, and a new branch of science
had its origin; it is mainly concerned
with transformations of heat into me-
chanical work and the reverse and is
known as "thermodynamics." Soon
transformations of heat and work into
and out of other forms of energy-
chemical, electric, magnetic, electro-
magnetic—were also studied.

Before Mayer's clear formulation of
the first law of thermodynamics (about
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1842) and its acceptance, men had
experienced the limitations in transfor-
mations of heat into work. Nicolas
Leonard Sadi Carnot (1828) noticed
these clearly in his investigations on
cycles representing the working of heat
engines.1 These limitations necessi-
tated the formulation of the second
law of the thermodynamics. As Max
Planck tells us in a book of his,2 it
was formulated by Rudolf Clausius
(1850), William Thomson, Lord Kelvin
(1851), and Wilhelm Ostwald inde-
pendently in different languages. It is
easily seen that these different formula-
tions represent essentially the same
fact. According to Clausius,3 "A trans-
formation of which the final result is to
transform into work heat extracted
from a source which is at the same
temperature throughout is impossible."
Ostwald's principle is, "Perpetual mo-
tion of the second kind (which can
transform heat into work without any
limitation) is impossible." Another
version of the law, very convenient for
mathematical development, is ex-
pressed in terms of entropy, which was
first introduced by Clausius4 in 1865
(in 1855, according to Guggenheim5)
in his discussions of heat cycles.

The entropy change from state A to
state B is generally defined6 as

where d'Q is the heat absorbed by the
system at the temperature T and the
path of integration is taken as reversi-
ble, that is, through successive states of
equilibrium as ideally visualized in in-
finitely slow processes of transforma-
tion. On account of the first law, in
order that the definition be independ-
ent of path, the following must be an
exact differential

d'Q dU + pdV
-, or

(p and V are pressure and volume;
X/s and x/s are other quantities simi-
lar to p and V). Generally, in text-
books, the absolute temperature is in-
troduced as the integrating factor of
the Pfaffian for d'Q representing the
conservation of energy and the entropy
as the integral. Definition also sug-
gests that in cases of irreversible trans-

FEYNMAN'S PERPETUAL-MOTION MACHINE. Thermal motion of air molecules
would make the windmill turn in both directions, were it not for the ratchet-and-pawl.
The windmill should thus turn slowly in one direction, perhaps lifting a bug. Air mole-
cules responsible for the rotation would slow down and the air surrounding the wind-
mill would cool. Feynman points out, though, that the pawl is also subject to random
temperature motion, which may lift it sufficiently to permit the ratchet to turn back,
ward every so often. Furthermore, the pawl acts not just as a stopping device but
also as a mechanism able to drive the axle in the "forbidden" direction. Feynman
shows that work is performed only if the temperature of the air surrounding the wind-
mill differs from that of the pawl and its environment, and that the second law of
thermodynamics is quantitatively obeyed. (From J. Waser, Basic Chemical Thermo-
dynamics, W.A. Benjamin, 1966, and R.P. Feynman, R.B. Leighton, M. Sands, The
Feynman Lectures, Addison-Wesley, 1964.)

formations, the change of entropy is to
be calculated along a suitable revers-
ible path from A to B. At this point,
there are some conceptual difficulties
which, even at the present day, require
some careful considerations. The en-
tropy principle (the second law) is ex-
pressed, "The entropy of the universe
(or an isolated system) can not de-

crease

A5<0

Thus the second law shows the di-
rection of thermodynamic changes, and
in doing so it takes on a unique impor-
tance in natural philosophy. The no-
tion of unidirectional flow of time is
the basis of human experience of the
physical world and of science. It is
compatible with biological cycles:
birth and germination, growth and
death and decay. But most of the
fundamental laws of physics remain
unchanged when time t is changed to
—t; for these laws the notion of uni-
directional time flow is not essential.
Only the unidirectional change of en-
tropy of the universal system or a
completely isolated one provides a
plausible ground for the concept of
unidirectional flow of time.

According to Henri Poincare7

(1854-1912), the entropy principle, as

far as its form is concerned, has a
unique distinction from all other laws
of physics. Usually laws of nature are
expressed in terms of equality or co-
variance. But in the entropy principle
(and also in other versions of the sec-
ond law) it is done by inequality.
This peculiarity has been stirring the
curiosity of a large number of scien-
tists, and investigations have been
made to put forward some sort of ex-
planation along different lines and
from different standpoints.

In classical thermodynamics

When the laws of thermodynamics are
accepted as hypotheses and the con-
sequences of these laws are studied,
the subject is referred to as "classical
thermodynamics/' From this study
one gets the laws of phase transforma-
tions, those of chemical reactions, an
elegant theory of dilute solutions and
also many other results useful in en-
gineering. In a simple and straight-
forward way the results of thermody-
namics are extended to include all
forms of energy and problems of sur-
face tension, elastic and fluid media,
electric and magnetic phenomena in
which heat is evolved or absorbed.

In this connection, it is to be noted
that entropy, as usually defined, con-
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tains an arbitrary constant. For ap-
plication in mechanical engineering
and similar other subjects, entropy is
evaluated with reference to a standard
position. But for applications in some
subtle problems like evaluation of
chemical equilibrium or ionization,
knowledge of the entropy constant is
important. It is evaluated with the
help of the third law,6 which, in
Planck's terms can be expressed, "As
the absolute temperature tends to zero,
the entropy of a pure substance tends
to zero."

In axiomatic thermodynamics

Quite close to the classical develop-
ment are two elegant axiomatic formu-
lations of entropy and the entropy
principle, one due to Constantine Cara-
theodory8 and the other due to R.
Giles.9 In the first the concept of heat
is introduced as the secondary concept.
The principle of conservation of energy
is accepted but formulated without
using the concept of heat for adiabatic
changes. Adiabatic enclosures or
adiabatic changes of coordinates are
taken as undefined concepts or facts
of experience. Then a postulate, con-
sidered very plausible and named
"Caratheodory's Principle," is ex-
pressed: "In every neighborhood of
a point P in the space of states, there
exists a point inaccessible from P
adiabatically." From this principle
and from a general discussion of the
Pfaffian, entropy and absolute tem-
perature are introduced and the notion
of heat is formed. After Caratheod-
ory, discussions along the line have
been made by Max Born10 (1921),
Alfred Lande11 (1926) and Tati-
ana Ehrenfest-Afanassjawa12 (1925).
After nearly 30 years, the interest in
this approach has been revived, and
several workers are now trying to
explore the different aspects of this
theory.

This theory is entirely a "local" one
as opposed to a "global" one. When
in the investigations of physical or geo-
metrical problems, differential calculus
and differential equations are used,
considerations of local properties or, as
a German would say, "properties at
small," play the most important role.
Such a theory is referred to as a "local"
theory. On the other hand, where
techniques of integral calculus, mea-
sure theory or set functions are used,

considerations of global problems or
"properties at large" become promi-
nent. Such theory is "global" theory.

In 1964 Giles9 started with some
primitive, undefined concepts, namely,
of an operation + and a relation —»,
among states of a thermodynamic sys-
tem, and internal states with some ele-
mentary axioms, and built up a formal,
mathematical theory. In this theory
the entropy function is constructed as
a real-valued functional of states satis-
fying some sort of ordering and the
condition that it is zero for a suitably
introduced mechanical state. Giles's
theory is global.

A mechanical approach

The first attempt to construct a func-
tion behaving like entropy from a
mainly mechanistic standpoint is due
to Ludwig Boltzmann13 and Clau-
sius.14 For a single mechanical sys-
tem executing periodic motion, a func-
tion behaving like entropy is con-
structed by using mechanical concepts
and equations. One uses the principle
of adiabatic invariance, formulated en-
tirely in the terminology of mechanics
but not strictly in the framework of
classical mechanics. Later J. J.
Thomson15 (1884) also put forward
a mechanical explanation of entropy
that is closely similar to that of
Boltzmann and Clausius. Writing in
1908, Poincare16 told us that Her-
mann L. F. von Helmholtz (1821-
1894) also made similar efforts. Paul
Ehrenfest,17 while proposing its appli-
cability in some quantum problems, re-
ported briefly some aspects of the
theory of Boltzmann and Clausius in
an appendix. I have also given a brief
report of this approach in a book to
be published soon.18 But most sci-
entists, even Boltzmann himself, were
not satisfied with this theory.

In statistical mechanics

Boltzmann19 in 1877 or a bit earlier
was the first to put forward an inter-
pretation of entropy using some sta-
tistical arguments along with mechani-
cal reasoning for a mechanical model.
Boltzmann's H theorem demonstrates
the existence of a function, — 2/n log
fn, behaving like an entropy. He also
proposed a simple relation between
entropy and probability referred to as
the "Boltzmann principle." The pres-
ent-day form of the principle connect-

ing entropy with probability (strictly,
thermodynamic probability) and its
plausibility are mainly due to Planck,20

Ehrenfest,21 and others. J. Willard
Gibbs advocated the probabilistic in-
terpretation as early as 1876.° Gibbs's
famous book proposing an elegant for-
mulation of statistical mechanics was
published in 1902.22 In this he estab-
lished the great similarity between the
average value of the index of a prob-
ability distribution and the entropy.
In these theories, entropy is conceived
mainly as an ensemble property, a
statistical concept. These statistical
lines of investigation had the widest
support amongst physicists including
the pioneers like Albert Einstein, Paul
A. M. Dirac, and others.

The statistical arguments used in the
above theories lead to the idea of fluc-
tuations of physical quantities. Re-
sults about fluctuations that one gets
from the arguments, have been veri-
fied by experiments designed in other
branches of physics—even quantita-
tively. Satyendra Nath Bose's famous
work,23 in which the notion of weight
of a state rather than that of the distri-
bution of particles was introduced into
the usual method based on thermody-
namic probability, not only yielded
Bose statistics for photons but also
stimulated contributions of very signifi-
cant results like Bose-Einstein statis-
tics24 and Fermi-Dirac statistics.25 It
also revived an earnest search for the
real significance of basic concepts like
entropy. Einstein,26 Planck,27 Erwin
Schrodinger28 and others made critical
scrutiny of the entire standpoint of the
subject. At present Bose and Fermi
statistics are considered to reveal very
fundamental properties of elementary
particles. These results have been ac-
cepted as more significant and funda-
mental than the statistical mechanics
itself.

During the years from 1924 to 1926,
Charles G. Darwin and R. H. Fowler29

proposed a slightly different approach
to thermodynamic problems. Ac-
cording to their proposal, all ther-
modynamic quantities are to be taken
as average quantities. Full discussion
of the method and its applications can
be seen in the well known treatise of
Fowler.30 The elegant book of A. I.
Khinchin31 shows that Fowler's
method is related to the central-limit
theorem of the theory of probability,
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ORDERLY ARRANGEMENT of two groups of balls is destroyed by stirring in a
clockwise direction. The entropy of the system is increased. Stirring in counterclock-
wise direction does not increase the order; in fact, the entropy of the system increases
more, in accordance with the entropy principle of the second law of thermodynamics.

and A. H. Koppe32 deduced the re-
sults of Darwin and Fowler by appli-
cation of the Fourier transform and its
approximate evaluations.

In communication theory

In the mathematical theory of com-
munication Shannon33 proposed a
measure of information, choice and un-
certainty associated with a random
event as

H = - 2P, log Pt

where Fi is the probability of the ith
outcome of the random event. Using
the terminology of statistical mechan-
ics, he called his H an "entropy." It is
also simply related to the capacity of
the channel. Entropy plays a very
important role in information theory.
It provides a measure of information
and thus has access to different
branches of human thought.34

Probability, statistics, etc.

For the introduction of entropy into
communication theory, Shannon rep-
resented a discrete information source
as a random process and used the
terminology of this process freely.35

So Shannon's definition of entropy has
a direct and close relation with prob-
ability theory. Entropy is used36 as
an important concept in the logical
discussions of probable inferences. It
is also seen that different problems of
the theory of statistics can be solved
by introducing the notion of entropy

or the information, which is defined as
the negative of entropy.37

Shannon even calculated the en-
tropy of the English language.34 En-
tropies of some other languages have
also been calculated. A. N. Kolmo-
groff has associated the concept of
entropy with abstract sets in abstract
analysis. A comprehensive discussion
of entropy in different branches of
abstract analysis is in a recent lecture
of G. G. Lorentz.38

Essentially statistical approach

Since 1951, I have been developing an
essentially statistical approach to ther-
modynamics.39 In this development
discussions of thermodynamics have
been based on the theory of estimation
of statistics instead of the usual me-
chanical notions. I look upon mea-
sured values of some fundamental en-
tities as sample values. The ex-
ponential distribution is taken as the
distribution of thermodynamic states
from arguments similar to the usual
Baysian arguments39 or as conse-
quences of the additivity of funda-
mental entities.40

Then, I estimate the parameters by
a principle practically the same as
Ronald A. Fisher's principle of maxi-
mum likelihood. With this distribu-
tion, I calculate mean values and write
the equation for conservation of the
fundamental entities. The integral of
this equation yields the usual thermo-
dynamic entropy and different inte-

grating factors related to important
thermodynamic quantities. Here the
entropy is obtained as a constant k
times the logarithm of the Fisher like-
lihood function with the parameters
replaced by the maximum-likelihood
estimates. For detailed discussion of
this method you can consult my
book.18

Since 1957, E. T. Jaynes42 has been
developing a purely probabilistic ap-
proach based on the method of maxi-
mal entropy estimation of information
theory. He has taken entropy, as de-
fined by Shannon, to be the basic con-
cept to start with. All other thermo-
dynamic quantities, in Schrodinger's
way, he has identified by analogy with
parameters and expressions that ap-
pear in his discussion.

B. Mandelbrot,43 since 1959, has
been studying the parallel develop-
ment of physical statistics and mathe-
matical statistics. According to him
almost all concepts and propositions of
physical statistics are essentially simi-
lar to the corresponding concepts of
the others. They only differ in nota-
tion and terminology.

I have shown44 that the method of
maximum entropy estimation, that of
exponential distribution in which pa-
rameters are estimated by the principle
of maximum likelihood and that based
on Gauss's principle of the arithmetic
mean45 are equivalent. This result
clearly shows how my method and
Jaynes's are related and also throws
light on the interrelation between the
method of Darwin and Fowler and
other methods of statistical mechanics.
Further I have also shown that for an
ergodic population, that is, for a popu-
lation in which Bernoulli's theorem is
valid, l/N times the logarithm of the
likelihood function converges in prob-
ability to the entropy function of in-
formation theory. If this definition of
entropy is accepted, the notion of en-
tropy can be introduced for every sta-
tistical population. Recently46 from
this discussion I have established the
equivalence of the principal methods
of statistical mechanics.

In number theory

I have already mentioned many appli-
cations of entropy in different branches
of human knowledge. But these do
not appear to be complete. Moreover,
the possibilities of the application of
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entropy to newer fields are not yet
completely exhausted. Let me men-
tion a simple application of a new type
of problem. In the theory of num-
bers, in the problem of decimal repre-
sentation of numbers, the frequency
of occurrence of a particular digit has
been studied with great interest.47

(We might better say the "probability"
in the sense used by Venn, Rich-
ard von Mises, and Harold Cram-
mers.) A number is said to be "sim-
ply normal" if the frequency of every
digit is equal to 1/r, r being the scale
of notation. A number is said to be
"normal," if it is simply normal when
the scale of notation is any power of r.
From our above discussion, it appears
that the notion of entropy can be in-
troduced easily and by this introduc-
tion not only all definitions can be di-
rectly introduced in terms of entropy,
but also many propositions can be de-

duced easily. In a recent work,48 I
have done this, and some results have
been proved very easily. Also one
can introduce some new notions (de-
gree of normalcy, etc.). With com-
puters this method may provide an-
other means of verifying the principle
of entropy maximization.

And in general

Shannon's definition of entropy has its
origin in Boltzmann's H theorem.19

Now one can see easily that this
theorem can be demonstrated for a
class of H function where in the defini-
tion of H, Pi is replaced by p^ , a being
real and positive. It appears to be
interesting to study the consequences
of taking Ha for H in the discussions
of thermodynamics, information theory
and other branches of knowledge
where entropy has been used. This
type of function has already been con-

sidered in the study of the axiomatic
basis of information theory.

The general notion of entropy, as
introduced by Shannon, has proved its
significance in a vast field of human
knowledge. But, it appears that the
full significance of this concept is not
yet fully explored.
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