
Quantum Physics
In America
Between the Wars
Development of the Wigner-Seitz method for
interpreting metallic structure, study of Brillouin zones
and calculations of energy bands in solids
led to new understanding of molecular theory and
of electronic structure in crystals.

by John C. Slater

MANY YOUNGER PHYSICISTS feel that all
physics has grown up since World
War II; or if they admit some earlier
science, they feel that in this country
everything started with the influx of
European scientists as a result of po-
litical difficulties, beginning with the
rise of Hitler in 1933, in Germany and
Italy.

I believe this idea is a misconcep-
tion. I would like to describe the
June 1933 Chicago meeting of the
American Physical Society. It was a
gathering in which the shift of empha-
sis from European to US physics was
clearly evident. I will give an account
of the physics climate in the US dur-
ing the 1920's and 1930's as eminent
European scientists joined the increas-
ing number of US-trained physicists
on our campuses. I will also describe
the quantum-physics and molecular
theory when Harvard and Princeton
stood out as two prime centers of ac-
tivity. Finally, by means of a review
article on electronic structure of met-
als that I published in 1934 in Re-
views of Modern Physics, I will pre-
sent a survey of solid-state theory at
the time.

Chicago meeting

Numerous foreign speakers were
brought over for the meeting: Freder-
ick Aston, the isotope man from Cam-

bridge, John Cockcroft from England,
Niels Bohr from Copenhagen, Enrico
Fermi from Rome, as well as several
mathematicians, meteorologists and
representatives of other sciences. It
was an extraordinary meeting in that
some of the sessions were held on the
grounds of the world's fair. With
typical world's fair architecture, a
round lecture room had been designed
with acoustics so bad that a public-
address system was absolutely impera-
tive and with such limited seating ca-
pacity that a large part of the audience
had to stand around the circumference.
Nobody who was there will ever forget
poor Bohr's lecture. Those who knew
him will realize that he was almost en-
tirely inaudible even to people in the
same room, and yet he was not very
adept at public-address systems. As
he went to and from the blackboard,
he kept rotating in the same direction,
winding himself up in the cord of his
lapel microphone like a mummy. He
set the system howling, had to be un-
wound by helpers from the audience,
and generally provided enough amuse-
ment to help the audience (which in-
cluded mothers with their children as
well as physicists) forget that even
with electronic equipment, they could
hardly hear a word he said.

Most of the sessions, however, were
held under normal surroundings at the

university, and they were inspiring
sessions. The thing that impressed
me—very consciously, as I look back-
was not so much the excellence of the
invited speakers as the fact that the
younger American workers on the pro-
gram gave talks of such high quality
on research of such importance, that
for the first time the European physi-
cists present were here to learn as
much as to instruct. One must re-
member that in the 1920's the first
thing required of a young American
graduate student of physics was to
learn German so he could follow the
new work in the field. Today the first
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thing a young physicist of continental
Europe does is learn English so he can
attend meetings and learn of new
progress. This trend was already be-
coming visible in the 1930's, and I
felt the tide turning more specifically
at this 1933 Physical Society meeting
than at any other one moment.

Quantum physics in 20*s and 30's

This thought suggests, therefore, that
instead of going over the history of
the period between the two world wars
in chronological fashion, I adopt one
of the tricks of the chronicler: fix on
a particular instant (in this case 1933)
and ask what the situation of quantum
physics in America looked like at that
moment. We must remember that the
summer of 1933 was a rather dramatic
and momentous time. The inaugura-
tion of Franklin Roosevelt as president
in the preceding spring, the previous
breakdown of the banks and the "hun-
dred days" that had ushered in the
New Deal constituted an unusual era
of American life. It was also when
Hitler was taking over in Germany.
Both of these episodes were in a way
a result of the long depression that had
been going on since 1929, following
the fabulous decade of the roaring
twenties. At this point it is probably
worthwhile to sneak in another of the
tricks of the chronicler, the flashback.
How did the twenties treat quantum
physics, both in America and through-
out the world?

That was an extraordinarily inter-
esting period. It was one of the most
constructive decades that the country
has known. Money was flowing freely,
and the rebuilding of the cities that
went on then put them into the shape
that they have maintained until the
last two decades, again a great period
of construction. The universities re-
ceived enormous benefactions, made
remarkable growth, and reached the
form in which many of them remained
until recent years of still more remark-
able development. It was a time of
relaxed international feeling, of very
active interchange between people of
different countries.

This was the decade in which the
quantum theory really grew up, proba-
bly the most fruitful decade which the
science of physics has ever known.
The physics student starting his career
in 1920 as I did (I became a graduate
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student at Harvard that year) looked
up to a group of distinguished older
leaders: men like Max Planck, Albert
Einstein, Bohr, Max von Laue, Law-
rence Bragg, Max Born, Peter Debye,
Leon Brillouin, Paul Ewald, Charles
Darwin, Arnold Sommerfeld and Er-
win Schrodinger, all of whom were
well established by 1920. But during
the 1920's a great rush of new physi-
cists entered the field. Among the
theorists, arranged alphabetically, were
Hans Bethe, Felix Bloch, Gregory
Breit, Louis de Broglie, Edward Con-
don, Paul A. M. Dirac, Carl Eckart,
Fermi, Frenkel, Samuel Goudsmit,
Otto Halpern, Douglas Hartree, Wer-
ner Heisenberg, Walter Heitler, Wil-
liam Houston, Erich Hiickel, Friedrich
Hund, Egil Hylleraas, Pascual Jordan,
Oskar Klein, Hans Kramers, Ralph
Kronig, Lev Landau, Otto Laporte,
John Lennard-Jones, Fritz London,
Philip Morse, Nevill Mott, Robert Mul-
liken, John von Neumann, Lothar
N o r d h e i m , Robert Oppenheimer,
Wolfgang Pauli, Linus Pauling, Rudolf
Peierls, Giulio Racah, Leon Rosenfeld,
Svein Rosseland, John Slater, Edmund
Stoner, Igor Tamm, Llewellyn Thomas,
George Uhlenbeck, A. Unsold, John
Van Vleck, Ivar Waller, Gregor Went-
zel, Eugene Wigner, and Clarence

Zener. This list could easily be
doubled to include other important
names in the field.

Those of us who started our careers
at that particular time found ourselves
probably in the most competitive situ-
ation that has even been seen in physi-
cal science. Here was the decade in
which the most momentous physics
discoveries in a century were being
made, and here were 50 or more am-
bitious young men, entering a field
with a much smaller number of older
and very distinguished workers, all
trying to be in on the exciting discov-
eries that all were convinced were go-
ing to be made. The inevitable result
of this effort was a great deal of dupli-
cation. Almost every idea occurred to
several people simultaneously. No
one had time to follow through a line
of work without having someone else
break in on his developments before
they were finished. It is probable that
any one of a dozen theoretical physi-
cists whom I have mentioned, given
the situation that faced physics in
1924 just before the development of
quantum mechanics, would have
worked out its principles eventually,
had he been free to take his time about
it. But as things were, no one had the
time to do it all by himself, and wave

POTENTIAL ENERGY affecting an electron in a self-consistent model of a sodium
atom (a). For sodium crystal (b): There are maxima of potential between atoms.
Shaded area indicates broadened 3s level. Potentials are adjusted so that x-ray levels
agree and go from minus infinity at the nucleus to zero at infinity. —FIG. 1
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mechanics is a composite of the work
of many men. Certainly it attained a
richness and variety of approach in
this way that it would never have had

MOMENTUM EFFECT for energy. 2s
and 2p energies are relatively unaffected,
but 3s and 3p levels are strongly de-
pendent on wave vector k. —FIG. 3
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if it had been the work of one or a
few isolated scientists.

One will realize that Americans
were well represented in the list I
have given. Breit, Condon, Eckart,
Houston, Morse, Mulliken, Oppen-
heimer, Pauling, Slater, Van Vleck,
and Zener almost all originated in this
country, and all received their training
here. By 1933, a number of others
had moved here—a result of superior
opportunities in the US rather than of
European intolerance. These men in-
clude Goudsmit, Halpern, Laporte,
von Neumann, Thomas, Uhlenbeck
and Wigner, most of whom were in the
country well before 1933. Others, in-
cluding Bethe, Bloch, Fermi, London
and Nordheim, came somewhat later
but well before the end of the 1930's.
Still others came later. When we sur-
vey American quantum physics in
1933, we naturally wish to consider
the state of progress of those who were
then living in this country.

Centers of development

Probably the most active center in
quantum theory during the 1920's, was
Harvard. Out of the list that I gave
in the preceding paragraph, there were
four who had received much of their

training there, namely Oppenheimer,
myself, Van Vleck and Zener; two
more, Breit and Mulliken, had spent
extensive postdoctoral periods at Har-
vard. There was a distinguished
group of faculty members interested
in the development of the quantum
theory. Theodore Lyman was the dis-
coverer of the fundamental series in
the hydrogen spectrum that bears his
name. Frederick Saunders collabo-
rated with Henry Russell of Princeton
in unraveling the calcium spectrum,
which led to the Russell-Saunders
coupling theory. William Duane had
been active in x-ray methods to verify
quantum principles, and Percy Bridg-
man, though his main interests were on
the experimental side, had a deep in-
terest in all aspects of the theory of
solids. Edwin Hall, of the Hall effect,
was still active. The course on quan-
tum theory, an excellent one and one
of the first in this country, was given
by Edwin Kemble, whose major inter-
est was molecular spectrum theory.

Perhaps the next most active center
was Princeton, where Karl T. Comp-
ton, though not a theorist himself, had
assembled a strong group before he
left in 1930 to become president of
MIT. Wigner had joined the faculty
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ZONES IN MOMENTUM SPACE for body-centered space lattice, face-centered momentum lattice.
First solid represents the middle zone, identical with middle cell, bounded by faces parallel to (110)
planes. The second solid consists of parts of a polyhedron similar to the middle cell (first solid) cut
into pieces and pasted onto the first solid. The second zone is then the volume included between the
first and second solids, also bounded by (110). Similarly, the third zone is the region included be-
tween the second and third solids, bounded by (110) and (100). —FIG. 4

in 1930, and Condon, Eckart and
Morse, as well as many others, received
their advanced training there. Con-
don remained on the staff for a num-
ber of years. Chicago, where Arthur
H. Compton had been for some time
before 1933, had Mulliken among its
students and Eckart on its staff. Cali-
fornia Institute of Technology, recently

JOINING OF ENERGY FUNCTIONS
from neighboring periodic regions.
Energy is a function of momentum from
different momentum zones. The seg-
ments pieced together approximate a
parabola (dashed curve) but with an
energy gap at the boundary between
zones. —FIG. 5
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vitalized by the addition of Millikan
and others, had numbered Pauling
among its graduates and had Houston
on its staff. Michigan had been
greatly strengthened by the group un-
der Goudsmit, Laporte and Uhlen-
beck. These universities, and many
others, were actively preparing stu-
dents in quantum theory during the
1920's, and by the early 1930's (so I
believed) the American physics de-
partments were giving better training
in quantum theory than their Euro-
pean counterparts.

Atoms, molecules and quanta

This account is enough to set the stage
for the story of quantum physics in
1933. First let us think of funda-
mental quantum mechanics and of the
practically inseparable problem of
atomic theory. Here of course one
thinks of the great European workers:
Bohr, Sommerfeld, Heisenberg, Dirac
de Broglie, Born, Pauli, Schrodinger
and many others. This development
was practically complete by the end
of the 1920's. But we must not think
that even in this early and largely
European development American
physicists were unimportant We
must not forget that the greatest im-
petus toward the understanding of the
interrelation between waves and par
tides came from the Compton effect
discovered by A. H. Compton in 1923?

Its implications were thoroughly un-
derstood by him, and in the atmo-
sphere of Harvard in 1923, where Van
Vleck, Breit and I were all actively
working, we had a very lively under-
standing of the probability that a new

synthesis of light quanta or photons,
and stationary states or quantum con-
ditions, must be on the way. We were
all ready for quantum mechanics when
it came and had played our part in
bringing it about though competition
was so keen in those days that no one
person could go very far without run-
ning into the work of others.

By 1927 quantum mechanics was
essentially complete, but its applica-
tion to atomic structure was not,
though Dirac's explanation of the spin-
ning electron carried things a long
way. In 1929 I suggested determinan-
tal functions composed of spin or-
bitals-which combined ideas that
Dirac, Heisenberg, Pauli and Hund
had developed several years earlier-
and put multiplet theory for nonrela-
tivistic atoms on a useable basis. Also
in 1929 Breit suggested the relativistic
Hamiltonian that has been so useful in
treating relativistic effects in atoms.
Condon, along with his student George
Shortley at Princeton, at once took up
the atomic problem, and by 1933 the
work was mostly complete and was in-
cluded in Condon's and Shortley's
book that was published in 1935.1

The other side of atomic theory is rep-
resented by the self-consistent field
that Hartree had thought of in 1928.
In 1930 I had pointed out that this
method could be derived from a varia-
tional scheme, leading the way to the
variational approach to analytical ap-
proximations for self-consistent atomic
and molecular wave functions and to
the Hartree-Fock method. By the
middle 1930's some self-consistent cal-
culations were being done in this
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country, and Hartree had become a
fairly frequent visitor to MIT, where
by then I was department head and
where he liked to use the differential
analyzer, the large analog computer
that was being developed by Vannevar
Bush.

Molecular theory had its start in
two developments of the late 1920's:
the Heitler-London method and the
method of molecular orbitals. Of
these, the first was carried further in
the early 1930's by myself and Paul-
ing, who emphasized its relation to the
directional properties of valence
bonds. The second, developed by
Hund and Mulliken, was already well
established (through Mulliken's work)
in America by 1933 and was proving
valuable for interpretation of molecu-
lar spectra. Hubert James and Albert
Coolidge's classical work on the theory
of the hydrogen molecule—the first
really accurate calculation of a molec-
ular structure—was completed at Har-
vard under Kemble's direction in 1933.
At the same 1933 Chicago meeting of
the American Physical Society, there
was a symposium on quantum theory
as applied to molecules. Mulliken,
Pauling, Henry Eyring and I spoke on
topics that would sound very up-to-
date to a modern specialist.

Wigner-Seitz method

The topic that I now wish to follow
with particular care is the develop-
ment, in America, of the theory of
electronic structure of crystals. 1933
is also memorable for the Wigner-
Seitz method for discussing metallic
theory, worked out at Princeton. The
general ideas of the motion of elec-
trons in the type of periodic potential
that one finds in a crystal had been
worked out by Bloch and Bethe in
1928, and by 1930 Brillouin and
Morse had made significant advances
in the theory. The methods of Bloch,
Bethe and Brillouin had shown us the
general type of theory to be used and
had led to an understanding of the
relations between energy bands, en-
ergy gaps and so on, and the differ-
ences between insulators, semiconduc-
tors and metals. But they were poorly
adapted for quantitative calculations
of actual crystalline energy bands and
wave functions. The free-electron
type of theory had been worked out in
1928 by Sommerfeld and his students

TWO DIMENSIONAL VARIATION of energy. Brillouin zones cut by a plane yield
energy contours in momentum space, (a) Energy band going to 3s at infinite separa-
tion, (b) Energy band going to 3p at infinite separation. —FIG. 6

ENERGY CONTOURS showing two zones.

—a group including Houston and
Eckart, who were postdoctoral work-
ers in Munich—but it was realized that
one had to understand the energy
bands to proceed with the treatment
of different crystal types.

This situation was changed imme-
diately by the much more powerful
method of Wigner and Seitz, the cellu-
lar method, that dominated the field
for the rest of the 1930 s. By the time
of the 1933 Physical Society meeting,
I was already using this method for
investigations into the energy bands of
sodium and was starting work on a
review article on the electronic struc-
ture of metals, which appeared in the

—FIG. 7

Reviews of Modern Physics in 1934.2

Since this article furnishes a survey of
the progress of solid-state theory in
the period we are speaking of, I shall
make it the basis of my treatment. To
make it clear that we are talking about
the 1930's, I shall reproduce some of
the figures from that review article to
illustrate what I shall say about the
theory.

In figure 1 we see first the potential
energy affecting an electron in a self-
consistent model of a sodium atom.
The potential energy goes to minus in-
finity at the nucleus, to zero at infinity.
In figure la, we show the positions of
the 2p and 3s energy levels of sodium,
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the 3s being the easily detached va-
lence electron. If atoms are brought
together to form a sodium crystal, we
have the potential shown in figure lb,
in which there are maxima of potential
energy between the atoms, with the
potential rising to a higher asymptotic
value at infinite distance from the
boundary of the crystal. As the atoms
are brought together, the 2p level, far
within the atom, is not modified, but
the 3s level is broadened into a band
and lowered; the lowering leads to the
binding of the atoms to form the crys-
tal.

This broadening and modification of
the energy levels, shown in figure 2,
is the result of calculations that I was

working on in 1933 with the Wigner-
Seitz method. The first part, figure
2a, illustrates that at the distance of
separation found in the actual crystal
(between 3.5 and 4 units on the scale
of the figure) the Is, 2s and 2p levels
have not broadened or shifted at all in
energy. This fact is depicted more
clearly for the 2s and 2p in figure 2b,
although figure 2c is on such a scale
that the 2s and 2p lies far below the
bottom of the diagram. The broaden-
ing of the 3s and of the higher levels
is well shown, however. In the actual
crystal, we must realize that the lower
energy levels are occupied by elec-
trons; the upper ones are empty.
Specifically, the Is, 2s and 2p are oc-

WAVE FUNCTIONS of the 3s band as a function of position going through the crystal
from one atom to its nearest neighbor. The various curves show values of k, from k =
0, in a, to the edge of the Brillouin zone for g. —FIG. 8
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cupied; the 3s is half occupied; higher
ones are empty. Only the lower half of
the 3s band, shown in figure 2c, is oc-
cupied, which is indicated in figure lb
as the lowering of the band in the
crystal as compared with the atom.
The higher levels in figure 2c are emp-
ty levels. The optical properties of
metallic sodium arise from the excita-
tion of electrons from the lower, occu-
pied bands to the upper empty ones.

Brillouin zones

There is more information in the en-
ergy bands than one sees from figure
2. Bloch had proved that each wave
function in a periodic structure like a
crystal can be written in the form of a
plane wave, expressed in complex ex-
ponential form as exp(ik-r) (k is a
wave vector pointing along the wave
normal, of magnitude %r divided by
the wavelength, and r is the radius
vector) multiplied by a periodic func-
tion of position repeating in each unit
cell of the crystal. The reason for the
splitting of the wave functions into the
energy bands is that those functions
with different wave vectors k have dif-
ferent energies. It is then interesting to
plot the energy as a function of k.
Figure 3 is such a plot, in which k is
along a particular direction, in this
case the (110) direction, and in which
we give the energy as a function of the
magnitude of k. We see the practical
constancy of the 2s and 2p energies
(showing that their energies are not
appreciably split into a band), whereas
the 3s and 3p levels show a strong
dependence on k. We also note
another interesting point: The figure
is periodic in the k space. The cen-
tral repeating region is called the cen-
tral Brillouin zone, and all information
about the energy bands can be given
by studying only this central Brillouin
zone.

The Brillouin zone is really a three-
dimensional thing and is shown in the
first polyhedron of figure 4. There is
a good reason for taking part of the
energy as a function of k from the
central zone, part from one of the
neighboring periodic regions, and join-
ing these as if they were parts of a
single curve. Thus, in figure 5, we
show the 3s and 3p functions, from
figure 3, joined up in such a way. We
see that the different segments of the
resulting curve follow rather closely
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the parabola that is illustrated by the
dashed curve but with an energy gap
in which we go from one zone to the
next. This dashed curve has a simple
significance. The wave vector k is
closely related to the momentum: If
we have a free electron, so that its
wave function is just the exponential
exp(ik'r), we can demonstrate by de
Broglie's relation that its momentum
is Vh. Its kinetic energy would be
mv2/2, where m is the mass and v the
velocity, or (mv)2/2m. Since mv is
the momentum, the energy is k2h2/2m.
This expression, if plotted as a function
of k, yields a parabola such as that in
figure S. In other words, the free-
electron energy is a good approxima-
tion to the energy of the electron in
the energy band.

We can show this approximate
free-electron nature of the energy
bands in three dimensions. What is
called the second zone in figure 5 con-
sists in three dimensions of parts of a
polyhedron like the Brillouin zone of
figure 4, cut up into pieces and plas-
tered onto the faces of the first poly-
hedron. This forms the second poly-
hedron of figure 4. Similarly we can
have a third zone, including those
regions between the second and third
polyhedra of figure 4. Brillouin had
made a fascinating study of these
zones and their geometry in 1930.
Now we can cut through such a figure
with a plane, not just with a line as
we did in figure 3 and figure 5, and
can ask about the values of the energy
at points in this plane. This can be
indicated by a set of contour lines, giv-
ing lines of constant energy. In figure
6 we find such energy contours for the
3s and 3p bands of sodium, depicting
the two-dimensional variation of the
energy as figure 3 depicted its varia-
tion in one dimension. And in figure
7 we show these pieced together as we
did in a one-dimensional case in figure
5.

If we had the free-electron case,
leading to the parabola in figure 5, in
an xy plane the energy would be given
by setting (kx

2 + ky
2)h2/2m = energy

= constant, which is the equation of a
circle. We see from figure 7 that the
lower energies correspond to circles,
but for higher energies the circles be-
come very distorted, particularly as
they approach the boundaries of the
zone. However, the occupied energy
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SPIN EFFECTS. Density of electrons around a given electron
plotted against internuclear distance. Curve A for electrons of
same spin as given electron, B of opposite spin, C for both
spins combined. One unit of density represents maximum
allowable value for electron of one spin. FIG. 9
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levels (those below the so-called Fermi
energy) correspond to the circles well
within the central zone. For the
Fermi energy the surface of constant
energy (in three dimensions), called
the Fermi surface, is very nearly a
sphere. Thus for the occupied energy
levels of sodium, the free-electron ap-
proximation holds quite accurately.

Wave functions

This does not mean at all, however,
that the wave functions of the elec-
trons are plane waves, as they would
be for free electrons. This is illus-
trated in figure 8, in which we show
the wave function of the 3s band as
a function of position as we go through

the crystal, along a line from one atom
to its nearest neighbor. The various
parts of this figure, a . . . g, show
different values of the magnitude of k,
from k = 0 for a to the edge of the
Brillouin zone for g. In each case the
wave function goes through rapid os-
cillations near the nucleus. These are
similar to the behavior of an atomic
3s or 3p wave function in the isolated
sodium atom. Between the nuclei,
however, the wave functions run
smoothly, not far from the dashed
curves that represent the real part of
the exponential plane wave.

We were interested in 1933 not only
in solving Schrodinger's equation for
the type of periodic potential found in
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a metal, but also in the determination
of this potential from the electronic
wave functions. It was known from
the Hartree-Fock method that we
could arrive at this determination by
taking the potential of all nuclei, of
the charge distribution of all electrons
(including the one whose motion was
being investigated), and then making
an exchange correction to account for
the fact that this electron really did
not act electrostatically on itself. The
nature of this exchange was elucidated
in the paper of Wigner and Seitz.
They noted that an electron, because
of the Pauli exclusion principle, keeps
other electrons of the same spin out of
a region, roughly a sphere and large
enough to contain one electron of the
same spin. In other words, if one goes
out from an electron, the probability
of finding another electron of the same
spin infinitely close to the electron in
question is zero, and it gradually rises

to the limiting value at a distance
equal to the radius of this sphere,
called the Fermi hole, on account of
its relation to Fermi statistics. In
curve A of figure 9 we see how the
probability of finding another electron
of the same spin rises as r increases.
This curve is computed for a free-elec-
tron gas, for which simple calculations
can be made, as Wigner and Seitz did,
rather than for the situation actually
existing in the metal.

Exchange effects

The exchange integral is the electro-
static interaction of the electron with
the deficiency of electronic charge
located within the Fermi hole. Be-
cause of its existence, there is an
energy preference for a situation in
which two electrons are found with
parallel spins, rather than with anti-
parallel spins. The reason is that an
electron is not nearly as effective in

keeping an electron of opposite spin
away from itself as one of the same
spin. The Pauli principle does not
operate, and the other electron is kept
away only by electrostatics. The de-
tails of this electrostatic repulsion,
leading to what is known as the corre-
lation effect, were well known from
studies of the helium atom, by Hyl-
leraas, myself and others around 1928:
A problem in which the interaction of
two electrons that have opposite spin
was investigated in detail. From this
study the distribution of electrons of
opposite spin around a given electron
is known to be of the nature shown in
figure 9, curve B. The study of the
exchange and correlation effects in the
sodium crystal had been carried out by
Wigner and Seitz in their 1933 paper
and applied to the study of the cohe-
sive energy of the crystal, with very
satisfactory results.

Since two electrons of opposite spin
orientation can approach closer than
those of the same spin and since elec-
trons repel electrostatically, this means
that the energy of a state with opposite
spins tends to be higher than that with
parallel spins. This fact had been
understood since Heisenberg's funda-
mental work in 1926. The most
straightforward application of it was
in Hund's rule that stated that the
triplet energies in a two-electron atom,
in which the spins of the two electrons
are parallel with each other, lay below
the singlet, in which the spins were
opposite. But Heisenberg had also
suggested that this was the explana-
tion of the phenomenon of ferromag-
netism that arose because the spins of
all the magnetic atoms in a magnetized
crystal of iron, cobalt or nickel tended
to lie parallel to each other.

Theories of magnetism

Heisenberg's idea had led to a great
development in magnetism. Van
Vleck, in particular, had taken up this
subject with great enthusiasm, and in
1932 his classic book on electric and
magnetic susceptibilities had come out,
laying the foundation for all subse-
quent work on magnetism, both in
America and elsewhere. The ap-
proach that he and Heisenberg had
used, however, was based on the as-
sumption of an exchange integral act-
ing between magnetic atoms and mea-
suring their tendency to orient paral-

50 JANUARY 1968 • PHYSICS TODAY



lei to each other. There was little
progress at the time ('and in fact there
has been little progress since then) in
computing these integrals from first
principles and even in explaining why
magnetism is found in the elements
that show it.

Bloch had taken quite a different ap-
proach to magnetic problems with the
energy-band method. He had asked
whether a metal, described in terms of
energy bands, could reduce its energy
by being magnetized. In the ground
state of the crystal, energy bands are
filled (with an electron of each spin in
each state) up to the Fermi energy.
If the crystal were to magnetize, elec-
trons with spin down would have to
be removed from the top of the occu-
pied energy levels. They would have
to reverse their spins to have spin up
and then because of the Pauli principle
would have to go to higher energy
levels not already occupied by elec-
trons of spin up. For two reasons the
energy would change in this process.
It would increase by an amount that
would be greater, the broader the
energy band, because electrons are be-
ing excited to higher levels; it would
decrease because of exchange since,
as indicated in figure 9, in the mag-
netized state other electrons would
keep away from a given electron more
effectively than in the unmagnetized
state. Bloch had made calculations
for a free-electron metal, in which the
energy was given by the same expres-
sion k2h2/2m that was mentioned
earlier, and in which the exchange
effect could be calculated. He had
shown that such a metal would not
spontaneously magnetize. The energy
increase was too great because of the
width of the energy bands.

Energy band approach

It had appeared to me for some time
before 1933 that this energy-band
theory gave the possibility of under-
standing ferromagnetism, whereas
Heisenberg's and Van Vleck's ap-
proach could not deal quantitatively

: with it. Everyone assumed that in
j such metals as iron, cobalt and nickel

the energy bands arising from the 3d
electrons would be much narrower

; than those arising from outer electrons.
j This condition is natural by analogy
, with figure 2, in which the inner elec-

trons of an atom have wave functions

that do not overlap and consequently
energy bands that do not broaden until
we reach much smaller interatomic
distances than we find in the crystal.
For this reason the 3d orbital in an
iron-group atom is small enough so
that we should have small broadening.
In 1930 I had estimated the sizes of
various shells in the atoms and had
shown that this supposition was veri-
fied. One should expect, then, that in
a ferromagnetic metal the partially
filled 3d band of electrons would re-
quire small enough energy increase
when the electrons were lined up
parallel to each other; thus the ex-
change effect, which could be esti-
mated from atomic spectra, would out-
weigh it and lead to spontaneous mag-
netization.

I had been anxious to test this hy-
pothesis quantitatively, and when the
work of 1933 and 1934 showed that
one could reliably calculate the energy
bands by the Wigner-Seitz cellular
method, I felt that the time had come
to try to calculate the energy bands of
a ferromagnetic crystal. Fortunately
I had several graduate students who
were interested in using the new
methods to find energy bands. One
of them, Harry Knitter, undertook
to find the energy bands of copper,
the next element beyond nickel, which
would be expected to show the same
type of 3d bands as the ferromagnetic
elements. By 1935 he had found good
energy bands 'and a density of states
that showed, as one would suppose,
that the band was quite narrow or that
the number of states per unit energy
range was very large.

In 1936 I applied these calculations
to the ferromagnetic problem. In fig-
ure 10 we have the curve for density
of states that was found in this way.
The very high peak represents the 3d
band, superposed on the much lower
conduction band. In figure 11 there
is a curve taken from the same paper,
showing the magnitude of the increase
of energy as a result of raising elec-
trons to higher states and the decrease
of energy on account of exchange, as
a function of the number of missing
electrons in the 3d band. This curve
shows that the exchange effect pre-
dominates so that the metal would
magnetize spontaneously for just the
numbers of missing electrons found in
iron, cobalt and nickel, thus verifying

the magnetic properties of these ele-
ments. Although the finer details of
this calculation are not very reliable,
recent calculations along the same line
have demonstrated the essential cor-
rectness of this picture of ferromag-
netism.

Crystal properties explained

Naturally these results on energy
bands were encouraging enough to
create a lot of activity in finding energy
bands for many types of substances.
Various students and colleagues of
mine made calculations during the re-
maining 1930's on other metals, co-
valently bonded insulators like dia-
mond and ionic crystals like KC1. In
each case the energy bands were of
the type required to explain the known
properties (electrical, magnetic and
optical) of the substance. Work along
these lines went on at Princeton, and
under my direction at MIT. Hund, in
Germany, took up the method, and he
and his students made valuable contri-
butions. This energy-band work in
the latter 1930's represents the first
serious attempt to understand the elec-
tronic properties of real crystals in
terms of calculations from first princi-
ples.

In spite of the success of these cal-
culations, we realized that they were
not perfect. The misgivings about
the method were serious enough, how-
ever, so that it seemed desirable to
improve it. In 1937 I suggested one
way of doing this, which has now
come to be called the augmented
plane-wave method. In 1940 Conyers
Herring, who had recently finished his
doctoral work at Princeton and was
carrying on postdoctoral work at MIT,
suggested another method, the orthog-
onalized plane-wave method. Both
of these methods were tested in the
prewar period, the augmented plane-
wave method by Marvin Chodorow
on copper, the orthogonalized plane-
wave method by Herring and Albert
Hill on beryllium. But war was with
us; further use of these methods had to
be postponed to a later date.
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