door to discussion within APS of any issue under the sun, a discussion that would be hopelessly divided between the merits of the particular issue and the appropriateness of the issue as a matter of concern to APS.

Speaking of the substance of the amendment, I would be in favor of a change that would allow a discussion within APS of issues directly pertaining to the work of its members as scientists. Such issues would include topics like scientific priorities, scientific aspects of foreign aid, the impact and the connection of science with governmental agencies such as the Department of Commerce, Department of State, Department of Housing, etc., the allocation of national resources for scientific research, the social structure of scientists themselves, and many others. I feel that these are issues that at least partially match the special competence

we are supposed to have; therefore their consideration would be a significant contribution to ourselves and to society as a whole.

I would be very much opposed to allowing APS to discuss general public issues. Each of us, as an individual. has innumerable outlets for such activity, including some organizations especially geared to scientists. Dragging APS into this would be quite superfluous. In addition, I am also very sensitive to any trend that might result in public statements by APS on issues in which we have no special competence. Such statements would necessarily carry in the public mind a false tinge of importance and authenticity just because they are utterances by scientists who, according to the contemporary myth, have at least the key to the solution of all problems by their "objective," "scientific" method.

MICHAEL J. MORAVCSIK
University of Oregon

Subcritical and no joke

The "Search and Discovery" department in the September issue struck a jarring note with the comment, "With a little effort you can become the only kid on your block," using a "Smallest Nuclear Reactor." The essential point in the associated work was exactly the opposite. Presuming complete ignorance of criticality safety work, it is still impossible to make less than about 1 kg of U235 supercritical unless you work with water solutions in a large volume of a good moderator such as beryllium, graphite, or heavy water. Using much less than 1 kg, for example, the 242 grams quoted, you are completely safe from a nuclear transient in any geometry-and that is very nice to know. There has been such a great deal of nonsense connected with the possibility of a nuclear reactor exploding that I noted the editor's tacit agreement with much regret.

CARROLL B. MILLS Los Alamos Scientific Laboratory

Environment and medicine

I would like to congratulate PHYSICS TODAY and Albert Crewe for the excellent article "Science and the War on ..." (PHYSICS TODAY, October, page 25). It is encouraging to see a person

of Crewe's stature calling us to task. The complexities of the problem of uncluttering our environment are enormous and will require the concerted effort of all professionals, as professionals.

We at the American Medical Association are focusing in on the medical aspects of environmental pollutions and how the medical profession can attack the problem. Only by the combined efforts of professionals from various disciplines do we have a chance of cleaning up our environmental septic tank.

Gordon R. Engebretson
Department of Environmental Health
American Medical Association

In support of applied research

Problems of the types described in Albert V. Crewe's article (Physics Today, October, page 25) exist in an atmosphere of social, economic and political pressure. Such an atmosphere is not conducive to free investigation and, consequently, is shunned by scientists as investigators. The result is often a general disdain by scientists for applied research. Applied research is viewed as being subject to corporate and government pressure and tackled with shoddy thinking.

IF HYCAM IS SO GOOD...

HOW CAN IT BE SO CHEAP?

This is a question we are often asked. How can the most advanced 16-mm high-speed rotating-prism camera in the business, having the widest speed range and the greatest number of exclusive features, also have the smallest price tag of them all?

The answer is: Simplicity of design minimizes manufacturing cost. Image quality is assured by assembly of the shutter, prism, and sprocket on a single shaft. **No gears!** Simplicity pays dividends.

Three years have made Hycam the front runner in the market. Just talk to any Hycam user if you want the real story. If you don't know a user, ask us. We suggest you start by reading our literature. Send for data file 180189

Or, see our 16-mm sound film, "The Hycam Story."

Red Lake Labs

2971 CORVIN DRIVE KIFER INDUSTRIAL PARK SANTA CLARA, CALIFORNIA 95051 TELEPHONE (408)-739-3034 Vibration characteristics of most mechanical refrigerators have long barred their use in cooling Mössbauer experiments, where minutely controlled motion is vital. Scientists wishing to operate at 20°K have been forced to use liquid neon, which is frightfully expensive, liquid hydrogen, which is dangerous, or cold gas boiled off from liquid helium, which is cumbersome and expensive. We have felt for some time that our slow-speed CRYODYNE® Helium Refrigerators had low-vibration characteristics that would make them apt candidates for Mössbauer work.

We are happy to report that Wiggins and Oleson

at Johns Hopkins University have successfully used one of our 20°K CRYODYNES in a full-scale experiment, in which the Mössbauer effect in U238 was observed for the very first time. Their experimental set-up is pictured below. The refrigerator was operated over the temperature range of 27°K to 60°K with thermal loads of up to 6 watts. Vibration was no problem.

CRYODYNE® Helium Refrigerators also have been used in cooling liquid hydrogen, neon, and deuterium targets, in infrared devices, and in other applications that seem to be limitless.

Send for our bulletin on these remarkable machines.

INCORPORATED • A SUBSIDIARY OF Arthur D. Little, Inc. 50 Acorn Park, Cambridge, Mass. 02140 Telephone (617) 491-5700

- providing the world's most complete line of helium refrigerators and liquefiers.

Such a view of applied research is not necessarily accurate—even when it concerns problems outlined by Crewe.

The terms "applied' and "basic" appear to have become associated with "directed" and "undirected." The distinction lies in whether specific goals are to be attained within a definite time interval. In the extreme, directed research may have dictated in advance the tactical approach to a problem and the kind of results de-Conversely, undirected research in the extreme may be totally devoid of long-range planning. Most research falls between these two extremes. This fact blunts the distinction between applied and basic research. The question, then, is how much applied research should be pursued. For example: Is applied research appropriate to either a master's thesis or a doctor's dissertation?

Applied research is not the easiest kind of research. Usually research must be completed within a specified time interval; consequently the plan of attack must be carefully considered. Applied problems involve usually more than one area and often more than one discipline. The results of such investigations and their significance must be communicated accurately and clearly to persons unknowledgeable in the scientific and technical aspects of the problem. To be adequate to these demands the researcher must have intuitive foresight, breadth of outlook and depth of understanding. These attributes are the basis on which the skill of precise thinking can be developed. They are the same attributes we hope to see in our graduate students. From these considerations, applied research may furnish appropriate problems for graduate research in, for example, physics-or any of the natural sciences.

R. Hobart Ellis Jr's editorial in the same issue suggested very realistic economic motives for pursuing applied research. There are equally realistic educative motives for the judicious acceptance of applied research as appropriate to graduate programs in the natural sciences.

SCHWAB S. MAJOR JR University of Missouri at Kansas City

Cutting NBS budget

The cut, by Congress, of the budget of the National Bureau of Standards (PHYSICS TODAY, August, page 51) accentuates the peril that has threatened this valuable institution for quite some time. Whether the present stress on mission orientation is justified or not, it appears reckless to sacrifice to it a service of such importance to the scientific community for a gain of just \$7.8 million (!).

Your story attributes this continuous misery to the lack of skill of NBS experts in expressing themselves to congressional committees. It appears to me that both Congress and the NBS dispose of plenty of witnesses, expert in science as well as communication, who could testify for the quality of men and topics sacrificed by this ruthless and petty decision.

Norbert J. Kreidl. University of Missouri at Rolla

Baccalaureate Origins of PhD's in Physics

The "State and Society" section of the August PHYSICS TODAY published a report, "NAS Data Give Baccalaureate Origins of PhD's in Physics," stating that of all US students who earned PhD's in physics during 1958-66, 70% received their bachelor's degree from PhD-granting institutions, 19% from MS-granting institutions and 11% from four-year institutions. This report cites earlier data from M. Hugh Trytten, National Academy of Sciences, which indicate that in 1936-45 fouryear colleges had been the origin of 35% of the 1160 physics PhD's. It continues with a discussion of "causes of decline," and concludes that fouryear colleges now produce only about 11% of future physics doctorates.

Is there a decline in physics PhD's with baccalaureates from four-year or undergraduate colleges? Intelligent answers to questions related to the role and importance of various types of educational institutions require more than a superficial treatment. Analysis is not as simple as the PHYSICS TODAY report assumes. Several points should be considered: (1) It is not possible in principle to determine the present importance of various types of educational institutions, as baccalaureate

MONOCHROMATOR, miniature quartz prism type, F/ .6 Range 190-1500 mu. Slits are adjustable in unison.

PHOTOMULTIPLIER housings and tubes. Thermo-cooled and standard types for all side and end-on photomultipliers.

PHOTOMETER for photomultiplier operation with adjustable high voltage and sensitivities to the nano amp range.

LAMP SYSTEMS with quartz optics, for Xe and XeHg lamps from 75 to 6500 Watts; also stable power supplies.

ACCESSORIES as liquid filters, condensing systems and socket mounts for Hanovia, Osram, GE and other lamps.

Write for Brochure

SCHOEFFEL WSTRUMENT-CORP. Westwood, N. J. 07675

(201) 664-7263