Frank H. Spedding, director of Ames Laboratory, Iowa State University.

Smyth, who is a US representative to the International Atomic Energy Agency, was cited for outstanding contributions to many fields including leadership as a member of the AEC and for furthuring public understanding of atomic energy in the "Smyth Report." As a specialist in atomic structure, he was part of the program that produced the first atomic bomb. After the second world war, his reports were instrumental in helping the AEC to develop a nuclear power program.

Spedding received the award for developing processes to produce highpurity metals and for his research in rare-earth elements. At Iowa State University in 1942, he organized the atomic project; he and his staff devised a method to produce high-purity uranium at low cost, some of which was used in the first self-sustaining reactor operated by Enrico Fermi at Chicago.

Michelson Award Given To Martin Schwarzchild

The fifth annual Albert A. Michelson Award has been presented to Martin Schwarzchild, professor of astronomy at Princeton University. He was honored for his mathematical analysis of the internal structure of red giants stars, for leadership in the theory of stellar evolution and for pioneering application of balloon-born telescopes to high altitude observation of the sun, stars and planets.

The award, which carries an honorarium of \$5000, is given by Case Institute of Technology of Case Western Reserve University. It is presented in honor of Albert A. Michelson, first American Nobel laureate.

Alan Waterman, Leading Science Administrator

Alan T. Waterman, first director of the National Science Foundation, died on 30 Nov. in Washington, D. C. He was born at Cornwall-on-Hudson, New York in 1892 and did both his undergraduate and graduate work at Princeton University, receiving his PhD in 1916. After two years of military service in World War I, he joined the faculty of Yale University where he remained until World War II. From 1941 to 1945 Waterman was associated with the Office of Scientific Research and Development (OSRD), and he served as deputy chief and chief scientist of the Office of Naval Research from 1946 to 1951.

President Truman appointed Waterman the first director of the National Science Foundation in 1951, for a sixyear term. In 1957 President Eisenhower reappointed Waterman to the post, and although he reached the age of compulsory retirement before the expiration of his second term, he continued to serve until June 1963 at the special request of President Kennedy

At the request of PHYSICS TODAY,

John T. Wilson, deputy director of the National Science Foundation, wrote the following tribute:

Among the achievements of a man's lifetime there are, for one reason or another, those that have a personal meaning and for which he would like

WATERMAN

particularly to be remembered. I once teasingly suggested to Alan that of his many attainments, I had a strong suspicion that the one he prized most highly was his mastery of the Scottish bagpipes. With the familiar twinkle in his eye he replied that he would have difficulty choosing between the bagpipes and his certification as a licensed Maine-woods guide.

Alan Waterman received a host of

A. C. RESISTANCE BRIDGE

Sensor Power Dissipation 10⁻⁶ to 10⁻¹⁰ Watts

FEATURES

- . 0.005% Relative Accuracy
- 0.05% Absolute Accuracy
- Transistorized Modular Design
- . Dial Readings direct in sensor "R"
- 3 Terminal Network with Capacitive Compensation
- Includes: Phase Detector for D.C. Readout,
 Signal Generator, Power Supply and Narrow Band

amplifier.

Optional: Bridge Monitor Oscilloscope for Null
Balancing Vert. Sens. 10 MV/CM.

OTHER INSTRUMENTATION

MUTUAL INDUCTANCE BRIDGE

for experiments in magnetic susceptibility in cryogenic temperatures with relative accuracy of 8 imes 10⁻⁴ microhenries.

CRYOGENIC THERMOMETER

for accurate measurement of temperature from 0.3 $^{\circ}$ K to 30 $^{\circ}$ K with an accuracy of \pm 0.00001 $^{\circ}$ K at 1 $^{\circ}$ K.

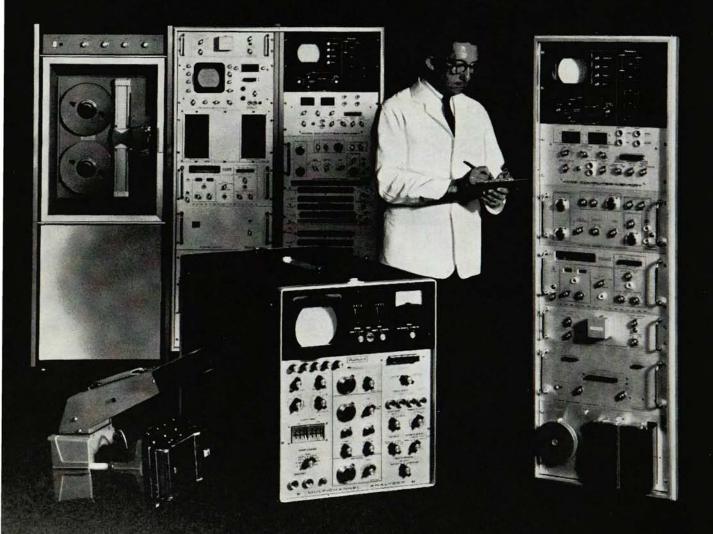
CRYODIAL

for proportional control and indication of temperature from 4.2°K to 300°K, ±.020°K, transistorized modular design.

CRYOLEVEL

for control and indication of cryogenic liquid level.

30 Day Delivery on all items Write for complete literature


CRYOTRONICS INC.

WEST MAIN STREET . HIGH BRIDGE, N. J.

Packard

Whatever parameters
you use...
there's a
Packard system to
analyze them

Whether your research demands high resolution, single-parameter instruments or sophisticated multiple-parameter systems, Packard can serve your needs. And versatility of analyzer type is complemented by versatility of system function. For example: ■ The Model 115, 400channel analyzer incorporates a 4 megacycle ADC with excellent linearity and stability; an exclusive "Readout Limits" control allows restriction of data printout to any selected band of channels-from 2 to 400. ■ Packard Multiparameter Analyzers are modular, expandable data acquisition and processing systems incorporating a wide choice of data input, storage and readout modules designed to meet virtually any present or future experimental requirements. Precisely defined interconnecting blocks permit the addition of new modules at any time. Packard's unique computer-compatible analyzer systems enable the researcher to collect and record all of the data from complex experiments, analyze them in a 4096-channel computer-memory unit, and record the results on magnetic tape. The basic design of Packard Analyzers and related components has been proven by extensive use in research laboratories throughout the world. For more information call your Packard Sales Engineer or write to Packard Instrument Company, Inc. 2200 Warrenville Road, Downers Grove, Illinois 60515.

honors for his unique contribution and service to the scientific life of the nation. Of the many, there are three that he valued with a special sense of pride and satisfaction.

The first Captain Robert Dexter Conrad Award, given by the Office of Naval Research in recognition of outstanding technical and scientific achievements in research and development for the Navy, was conferred upon Alan Waterman on 19 March 1957 for his outstanding contribution to the organization, and long range scientific objectives of research administration in the Navy.

The nation's highest civilian honor, the Presidential Medal of Freedom, was awarded to Waterman by President Johnson on 6 December 1963. Recognizing him as both a physicist and a public servant, the President cited him for his use of the resources of government to improve the quality and increase the thrust of basic research.

The third was a very recent honor, highly prized by Alan because of its relationship to the field of physics and to the man for whom the Medal is named. On 1 October of this year the American Institute of Physics awarded to him its Karl Taylor Compton Gold Medal for Distinguished Statesmanship in Science, in recognition of his contributions to the science of physics and his leadership in the evolution of policy determining the growth and support of science in the US.

For those who shared with him its birthpangs and its growing pains, the National Science Foundation will always be Alan's great achievementindeed, a living memorial to him. From this experience of sharing in ways large and small the triumphs and failures that attend such ventures, each of us will add to the many instances of public recognition, an affectionate memory of some personal event, reflecting the warmth, the sympathetic understanding and the unfailing integrity that, along with an ever-present air of outward calm, characterized Alan Waterman.

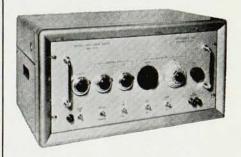
> JOHN T. WILSON National Science Foundation

Robert B. Sosman, Physical Chemist

Robert B. Sosman, a physicist and chemist who was a pioneer in ceramics, died on Oct 30 in Plainfield, N.J. He was professor of ceramics at Rutgers University from 1947 to 1962 and coöriginator of the Day and Sosman high-temperature scale, established in 1912. Sosman, who received his PhD from MIT in 1907, was physicist and assistant director of the geophysical laboratory of the Carnegie Institution during 1908-28. From 1928 to 1947, he was assistant director of the research laboratory of the United States Steel Corporation. He had also been a member of the research and development board of the Department of Defense.

Carl Kiess, Astronomer And Spectroscopist, Dies

Carl C. Kiess of the astronomy faculty of Georgetown University died on 16 Oct. at the age of 80 years. He was born in Fort Wayne, Ind. and obtained his doctorate in astronomy at the University of California in 1913. He was associated with the astronomy departments of the University of Missouri, Pomona College, the University of Michigan, and Georgetown University. Kiess spent most of his career with the spectroscopy division of the National Bureau of Standards.


John Charles Duncan, Astronomer, is Dead

Professor emeritus at Wellesley College, John Charles Duncan died on 10 Sept. at Chula Vista, Calif. He was 85 years old. He received his bachelor's and master's degrees at Indiana University, and his doctorate from the University of California. He had been a Fellow at Lowell Observatory, Flagstaff, Ariz. and Lick Observatory, Mount Hamilton, Calif.

Before joining the Wellesley faculty in 1916 as director of the Whitten Observatory and chairman of the astronomy department, Duncan taught at Radcliffe and Harvard. For 14 years after his retirement from Wellesley in 1950, he was visiting professor at Steward Observatory of the University of Arizona in Tucson.

CRYOGENIC VLF MUTUAL INDUCTANCE BRIDGE

Resolution: 8 x 10-4 µH

FEATURES

- New Stable, High-Gain, Low-Noise Bridge Circuit
- 0.05% Linearity
- Low Frequency—17 Hz or 155 Hz
- Self-Contained Signal Generator and Power Supply
- Standard Rack Panel
- Modular Plug-In Design
- Plug-In Range Changing
- Standard Range 200 μH

OTHER INSTRUMENTATION

CRYOGENIC AC RESISTANCE BRIDGE

for resistance measurements up to 12 megohms $\pm .05\%$ absolute, $\pm .005\%$ relative accuracy with only 10^{-6} to 10^{-10} watts sensor dissipation.

30 Day Delivery on all items Write for complete literature

CRYOTRONICS INC.

WEST MAIN STREET . HIGH BRIDGE, N. J.