

Complete Nuclear Physics Teaching Laboratory

At last! An accelerator-based teaching system for less than \$50,000. A lot less if you already have some of the electronics.

By system, we mean first, the equipment: a 400 KeV Van de Graaff accelerator, vacuum equipment, magnet, scattering chamber, detectors, radioactive sources, support electronics, pulse height analyzer, and radiation monitor.

Second, our teaching manual: 30 graded experiments in nuclear physics, explained step by step, enough to fill a 3-semester laboratory course. By then the student will have performed the fundamental experiments of nuclear physics and encountered a great deal of quantum mechanics, atomic physics, and solid state physics.

Research? Yes. In nuclear physics, solid state physics, atomic physics, and activation analysis. The magnet provides for additional research stations where your staff and graduate students can do original work.

It's everything a teaching/research system should be: simple to operate, virtually maintenance-free, easily modified for different experiments, low initial cost, expandable with optional equipment.

Our booklet, "The Van de Graaff Nuclear Physics Teaching Laboratory," shows just how this equipment and course book combine theory and practice in the modern physics curriculum. We'll be glad to send it to you.

\mathbb{H}_V	HIGH VOLTAGE ENGINEERING Burlington, Massachusetts
Nan	ne
Posi	tion
Orga	anization
Add	ress

Zip_

to be judged according to the dictum, "silence implies consent."

CHARLES SCHWARTZ University of California, Berkeley

EDITORS' NOTE: We do not wish silence to imply consent to all of the statements in the preceding letter. The following is the closing paragraph in a letter that we sent to Charles Schwartz on 11 October:

Consequently I return to you the article that you recently submitted and suggest that you make it into a letter to be part of the correspondence we will publish. In the letter we would like to have your own point of view as expressed in most of your article. We do not need the text of the resolution because it will appear elsewhere; we do not want the points of view of other people that you quote because they will have their own opportunity of expression; we do not want your "Exhibit A" and "Exhibit B." We do not need exhibit A because in the foreseeable future we do not plan to discuss political issues, and we do not want exhibit B because it is available in the APS constitution and it has been briefly summarized in our November story. I look forward to receiving a letter from you.

In a subsequent telephone call our chief editor told Schwartz that we would remove the strictures placed on him in this paragraph and allow him to publish anything he wanted to say in 3000 words including the original letter that was rejected. The editor reiterated that he thought Schwartz would dilute and weaken his argument by including other unnecessary material but allowed him that privilege if he wanted to use it.

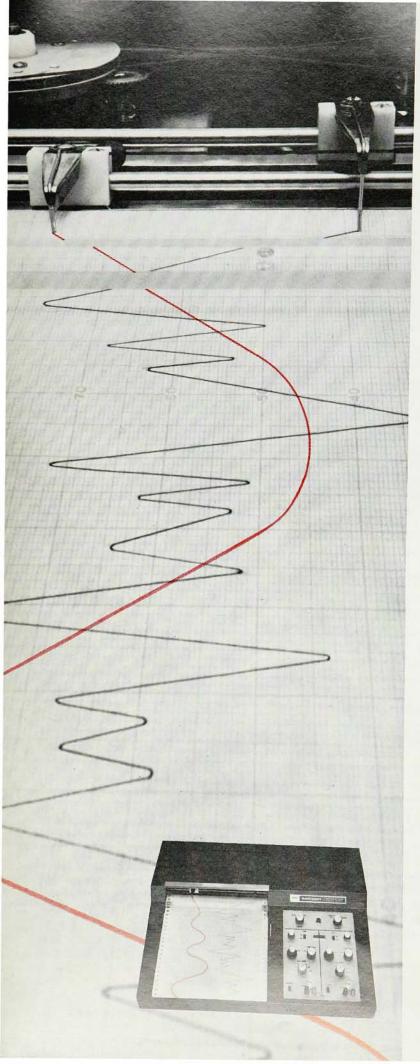
The basic purpose of the letter was to invite submission of what Schwartz refers to as "a thorough expository article," in a form suitable for this January "Letters" department. The overall delay would have been about four months from date of submission, and such treatment is not appropriately labeled by the words "rejected publication."

We of PHYSICS TODAY and AIP do

not feel that we "present this whole debate in [our] own terms." Perhaps the letters in the present column and our December editorial are the appropriate evidence on which to judge.

Let us call to your attention that the quoted, "We are concerned only with physics as physics," is a misquote to the extent that the word "only" has been added and appears to give an emphasis that was not intended in the original editorial.

Finally we do not wish to consent by silence to the term "censorship." Because of limits to space and staff, we must make choices. The terms of reference for PHYSICS TODAY and AIP are stated monthly on page 6 of this magazine: "advancement and diffusion of the knowledge of physics."


As we make our judgments in following this purpose, we are sure we make errors. We do not feel, however, that censorship is properly classed among them.

THE EDITORS

Responsibility to society

It is generally agreed that scientists have two traditional duties: first, the duty of seeking the truth; second, the duty to communicate to all who need it the knowledge gained in their search. Because of our burgeoning technology, we have reached the point where many key political judgements must be based on technical knowledge and scientific judgement. These judgements that should not be left to the politicians who on the whole are seriously lacking in scientific background. Scientists who help contribute toward political judgements in this computer age are performing a valuable public service and should be encouraged in this by their societies and publications. I am not advocating discussion of scientifically related political issues in The Physical Review: however, PHYSICS TODAY appears to be suited for this.

Another duty we scientists have is to protect the public from scientific hoaxes, whether small or large. This can best be illustrated by going into a specific example. It is purported that the President's scientific advisors and the Secretary of Defense have recommended against deployment of a \$5 billion ABM system. There is a case to be made on scientific grounds that

X, and X, vs. time.

Two pens.
Two sets of controls.

In a single, sensitive recorder: Sargent's new Model DSRG.

There's much to be said for recording two independent, time-related variables side-by-side on the same chart. You can more easily compare and contrast both functions. You can conserve precious bench space. And you should save a good deal of chart paper.

But for benefits like these you need a recorder like this: Sargent's new Model DSRG Dual-Pen Recorder.

The DSRG has two pens, two independent recording channels, and two sets of controls. You can operate the channels singly or simultaneously, with related or independent inputs. And select a different span for each channel, for full or half-scale, with or without a marginal integrator for each trace.

So you can record two variables as either two overlapping traces slightly offset in time or as two side-by-side traces coincident in time.

Either way, you'll get a faithful record of both variables —the DSRG's accuracy is $\pm 1/4$ % (or ± 5 microvolts, whichever is greater). Reproducibility is ± 0.1 %. Add to those figures a full-scale pen response of less than 1.0 second. And circuits are guarded to give a common mode rejection of 140 db (60 Hz) and inputs are filtered for a normal mode rejection of 80 db (60 Hz).

But all of this accuracy and versatility isn't worth much unless it's conveniently packaged. That's why we built the DSRG with three chart speeds, provision for remote switching of chart drive, and seven calibrated spans for each channel, with expansion to $2\frac{1}{2}x$ to provide continuous selection from 0.4 to 100 mv. The new Sargent capillary pens are easy to use, too—they're filled by a disposable plastic cartridge.

Two more things to know about the DSRG. It may act like two recorders, but it's only an inch or two larger than our single-pen models. And it's designed and manufactured by E. H. Sargent & Co.—which is another way to say reliability.

Price? With pens, paper, and connecting cables, the DSRG Dual-Pen Recorder costs \$1575.00. With one integrator installed, \$2160.00. (Dual integrators are available—ask for details.)

Please call your Sargent man or write directly to us.

Scientific laboratory instruments, apparatus, chemicals. E. H. Sargent & Co. 4647 Foster Ave., Chicago, III. 60630

Chicago/Anaheim, Calif./Birmingham Cincinnati/Cleveland/Dallas/Denver Detroit/Springfield, N.J./Toronto, Canada the system will not work as advertised. Should not the pages of physics today be open to knowledgeable physicists who are deeply concerned about such issues? Certainly there is a lot of physics in how high-altitude nuclear explosions can be used to blanket out long-range radar. This one technical point that has so far not been openly discussed could possibly be the death blow to the proposed thin ABM system. An open discussion among independent scientists as well as the "establishment scientists" will better prepare us for exposing this hoax, if it is a hoax.

Not only should PHYSICS TODAY help us fulfill our responsibilities to society, but the APS should be providing for one or two sessions or symposia per meeting on science and society. The AAAS and its publication Science are way ahead of us. This year's annual meeting of the AAAS will have two sessions on the ABM issue among others of political interest. Science has had lively letters to the editor on chemical and biological warfare and the role of the scientist in the Vietnam conflict. Now that science has so swiftly spread to almost every corner of our society, I would recommend a similar editorial policy for PHYSICS TODAY.

The original APS constitution was fine for the age in which it was written. But since then the atomic age, the space age and the computer age have exploded upon us. Do we not have a duty to our benefactors, the tax-payers, to at least keep up with the times?

JAY OREAR
Cornell University
Chairman, Federation of
American Scientists

To meet our obligations

arge

by a

ay ac

I strongly support the proposed amendment to the constitution of the American Physical Society that would allow the membership of the society to express themselves on public issues.

As physicists we are all very much aware of the impact of physics on public policy and vice versa. On the one hand, discoveries in physics dramatically affect national and interna-

tional events. Perhaps the most obvious examples have been in the field of nuclear physics, but we may also point to other advances such as in solid-state physics that have made the new generation of computers possible.

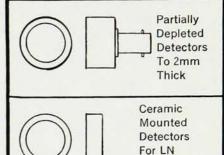
On the other hand, the physics community is directly affected by public policy. A large fraction of all research in physics is paid for by government funds. Additional government expenditures, such as for the war in Vietnam, divert funds and decrease productivity as well as eliminate jobs.

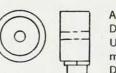
In addition to the mutual impact of physics and public policy, it is important to give some consideration to the human aspect of the proposed amendment.

Traditionally physicists tended to be isolated from public affairs. Since World War II, this "image" has dramatically changed. In fact, as a professional group, physicists are now among the most outspoken. This is especially true in academic environments.

Today physicists have become sufficiently concerned with public affairs that many are running for public office—from local positions to Congress (see "Physicists and the Elections," PHYSICS TODAY, November 1966, page 61).

I believe that the proposed amendment will help us as physicists to meet our obligations to society by enabling us to speak as a body and to use our influence directly to influence public policy.

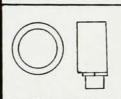

> I. RICHARD LAPIDUS Stevens Institute of Technology

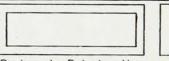

Direct, personal participation

I would like to support the amendment to the constitution of the American Physical Society proposed by Charles Schwartz of the physics department of the University of California at Berkeley. Today the great issues of society, both domestic and foreign, are increasingly concerned with and influenced by modern science and technology. Indeed the influence of science and technology on public policy is becoming so great that in my view it is insufficient simply to discuss and advise on public issues. As much as such actions by scientists are needed, I believe we must go even

SILICON SURFACE BARRIER PARTICLE DETECTORS

A Complete Line To Meet All Your Requirements




Annular Detectors Up To 24 mm Active Diameter

Use

Temperature

Totally Depleted Detectors In Transmission Mountings

Rectangular Detectors Up To 50mm long and 15mm wide

Nuclear Diodes now offers a new and improved production capability with most detectors available from stock or short delivery.

Call us with your special requirements for any of our products including position sensitive silicon detectors, germanium detectors, cryostats, vacuum chambers and F. E. T. preamplifiers. Phone: 312-634-3870

nuclear diodesinc