

SERPUKHOV SYNCHROTRON

The world's largest accelerator (photo above), turned on in mid September, has produced 76-GeV protons. The 470-meter-diameter ring is covered with 9 meters of earth. Control room and 100-MeV linac injector (below the ground) are in foreground. Curved roof covers experimental hall (behind). Each magnet unit (left photo) is 10 meters long and separated into five subassemblies by the square tabs. Magnet coils are wound with 70 tons of aluminum bus bar. At right is beam transport from linac to synchrotron. The rf accelerating cavities (right photo), which are ferritetuned, are fed rf power from the Vshaped base.

satellite use, but assignment of a specific space vehicle has not yet been made.

—GP

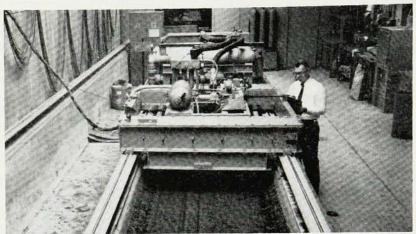
References

- R. H. Dicke, H. M. Goldenberg, Phys. Rev. Letters 18, 313 (1967); PHYSICS TODAY 20, no. 4, 63 (1967).
- C. Brans, R. H. Dicke, Phys. Rev. 124, 925 (1961); R. H. Dicke, Physics To-DAY 20, no. 1, 55 (1967).
- L. I. Schiff, Proc. Nat. Acad. Sci. 46, 871 (1961).
- I. I. Shapiro, Phys. Rev. Letters 13, 789 (1964).
- R. V. Pound, G. A. Rebka Jr, Phys. Rev. Letters 4, 337 (1960); R. V. Pound, J. L. Snider, Phys. Rev. 140, B788 (1965).

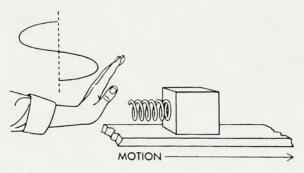
Electron Affinity of Helium Measured by Photodetachment

The first direct measurement of the electron affinity of helium has been reported by a team of physicists at the Joint Institute for Laboratory Astrophysics at Boulder, Colorado. This parameter represents the binding energy of an extra electron that may attach to an atom to form a negative ion.

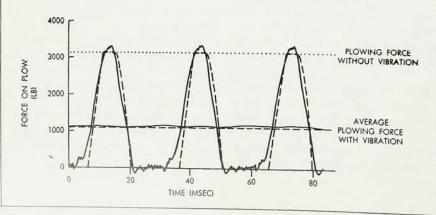
Although helium has no stable negative ion, since 1939 it has been known that the ${}^4P_{5/2}$ excited state of the ion is metastable against autoionization to the neutral atom, with a calculated lifetime of about one milli-


second. B. Brehm, M. A. Gusinow and J. L. Hall report their measurement of the electron affinity in *Phys. Rev. Letters* 19, 737 (1967). They used a laser beam to photodetach the negative ions and an electron energy analyzer to obtain the kinetic energy spectrum of the resultant free electrons.

The negative ions are formed by double charge exchange (two electrons transferred) between a 2.5-keV beam of positive helium ions and a target of neutral potassium. The beam is then decelerated to 700 eV; the negative component is separated from positive ions and neutral atoms, mass analyzed and focused. The light beam is


Report from

BELL LABORATORIES


Equations for plowing

Soil dynamics laboratory at the Bell Telephone Laboratories location in Chester, N. J. Test soils of various kinds are placed in the long bin (foreground). A plow blade, not visible in this photo, rides under the carriage frame. The blade can be vibrated over a wide range of frequencies and amplitudes as the carriage is driven along the length of the bin.

According to Bell Laboratories' mathematical model, soil reacts to a vibrating plow blade much like an elastic object being pushed against friction over a surface (sketch above). The hand moves sinusoidally and, during part of each cycle, contacts the spring. The resulting theoretical force-time plot (dashed line in the graph below) shows how vibration reduces plowing force. Superimposed is a solid line showing typical test results with a vibrating blade in a test bin (photo above) filled with silty sand. The blade vibrates front to back 30 times per second. The mathematical model, based on the above analogy, has allowed computer simulation of such soil-plowing systems.

It has long been known that vibrating a plow blade makes it easier to force through soil. But what kind of vibration is most effective? That is, how much power should be applied to the blade and in what manner should the blade be vibrated?

We at Bell Telephone Laboratories are accumulating considerable information on this subject because we need a small, highly efficient plow that will bury telephone wires across lawns and up to houses with minimum drawbar pull. Unlike agricultural plows, which are built for maximum disturbance of the earth, Bell System plows must bury cable and wires with least possible marring of the property.

Recently, this work has been aided by a mathematical model of plow blade-soil interaction. Bell Laboratories engineers R. J. Boyd and C. L. Nalezny found that forcing a vibrating blade through the ground is analogous to pushing periodically on a spring, attached to a block on a frictional surface (left).

This simple model has helped us design a prototype plow that buries telephone wires two feet deep at speeds up to 75 feet per minute. With most of its power applied to the blade, it can cut through rocky soil and tree roots where conventional machines might stall.

from a continuous-duty, argon-ion laser with two strong lines available, 4880 and 5145 nm. Interaction between the negative ions and the light beam occurs within the laser cavity. The kinetic energy of free electrons photodetached from the negative ions is measured with a hemispherical energy analyzer and an electron multiplier.

The experiment has also been run with hydrogen and deuterium negative ions, whose electron affinities are well known, as references, and the helium electron affinity has been found to be 80.0 ± 2 mV. The absolute total cross section for the photodetachment process was not determined from these experiments. It was found that detachment into the 2^3 S state of neutral helium is seven times more likely than detachment into the 2^3 P state, for electron ejection essentially parallel to the polarization of the optical field.

Self-Induced Transparency Found in Sulfur Hexafluoride

By applying a short, intense pulse from a Q-switched carbon dioxide laser to gaseous sulfur hexafluoride, Kumar Patel and Richard Slusher of Bell Telephone Laboratories have made the gas transparent to 10.6-micron radiation (Phys. Rev. Letters 19, 1019, 1967). They have thus verified the self-induced transparency first found with a ruby laser system by Erwin Hahn and Samuel McCall of Berkeley (PHYSICS TODAY, August 1967, page 47). To observe the effect, one must match the exciting frequency to a strongly absorbing transition in the sample.

Unlike the Berkeley experiments, which were plagued by the erratic behavior of pulsed ruby sources, the density of absorbers can be easily varied in the gas to see how transmission varies with collision relaxation times of the absorbing levels, the inhomogeneous Doppler line width and the absorption coefficients.

In Hahn and McCall's theory of the effect, the light beam coherently excites the molecules; they interact with each other and emit light; this process delays and reshapes the pulse into one in which the electric field vector varies

as sech (t/τ) (where τ is final pulse width) and under certain conditions widens the pulse. They make the simplification that the pulse is short compared with any relaxation time.

Patel and Slusher verified qualitatively the theory at sulfur hexafluoride pressures from 0.01 to 0.05 torr, and with intensities as low as 10 watts/cm². Then by adding a buffer gas (helium or hydrogen) to the sulfur hexafluoride they shortened the homogeneous relaxation time. They found that the pulse, besides being delayed (to an apparent speed in the sample 1/20 the speed of light) and reshaped, was narrowed by as much as one half.

In preliminary work Patel and Slusher tried to excite ammonia and ethylene with their carbon dioxide laser but did not succeed because absorption was too low.

The Bell physicists feel that they now have a promising technique for studying relaxation times of individual transitions in gases and gas mixtures.

Somewhere in the universe there may be short, intense, light bursts that pass through gases in space and may produce self-induced transparency in the dilute interstellar medium. Then an astronomer on earth would think the light source (such as the puzzling hydroxyl emitters, (PHYSICS TODAY, November 1967, page 69), is a lot farther away than it really is.

Venus Probes Report: Earth is the Oddball

The atmosphere of Venus is almost all carbon dioxide; below the atmosphere the climate is very dry and hot, and the pressure is 15 to 20 times that on earth. This is the forbidding picture of Venusian meteorological conditions that has emerged from the data sent back by Russia's Venus IV spacecraft and by the US Mariner V.

Spectroscopic observations from the ground had already shown the presence of carbon dioxide on Venus, but the concentration was not known. Estimates made since the first observation in 1934 have fluctuated widely between 1 and 90%. Measurements of the thermal infrared emission showed that the temperature is similar to the earth's at the top of the Venusian atmosphere, 235°K, but observations indicated that it is much hotter

at the surface-perhaps 600°K.

Data from the two spacecraft agree that the carbon dioxide concentration is around 90% and that there is no detectable water and apparently only slight traces of oxygen. In addition the Russian Venus probe measured an atmospheric pressure rising from 5 atmospheres at 30 km to about 20 atm at ground level and a temperature range of 270°K at 25 km to 553°K at the surface. This high surface temperature could be an example of the 'greenhouse effect;" the Venus atmosphere may be opaque in the infrared but transparent at other frequencies so sunlight is absorbed by the ground and the energy reëmitted by blackbody infrared radiation is trapped in the atmosphere. Alternatively it may be due to adiabatic heating where the atmosphere is highly opaque in the infrared and visual (due to dust) and the surface of the planet is heated by the general circulation.

Now that the composition of the atmospheres of Mars and Venus is becoming known it is, strangely enough, earth, with only 0.3% carbon dioxide, that stands out among these inner planets as the "oddball." If, as appears likely, the inner planets were all formed the same way, they might be expected to have similar atmospheres. The explanation could be linked with the presence of life on earth; if all the carbon dioxide in our surface limestone rocks could be released into the atmosphere, its concentration would be 20 times higher than that of nitrogen now. But water trapped in limestone and other crust materials would represent 99% of the atmosphere if it had not been fixed. Any model of atmospheric formation has to account for the presence of all this water, which ought to have been lost from the top of the atmosphere during the first billion years, long before the development of life on the planet.

Ichtiaque Rasool, of the Goddard Institute for Space Studies, recently suggested that earth originally lost most of its atmosphere; the water, carbon dioxide and nitrogen subsequently released from the crust by volcanic activity were reduced by free iron to hydrogen, methane and ammonia. Oxygen was retained as iron oxide. Then the presence of ammonia in the upper atmosphere shielded water molecules