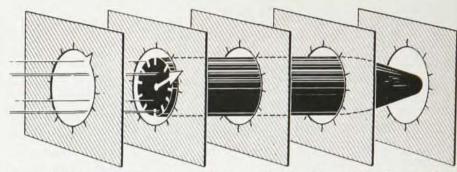
selves publishing in the Journal of One-Dimensional Physics. When that happens, it will be time for us to move on. Luckily, Lieb has already shown us the way. Since this book was finished, he has solved in rapid succession three outstanding problems of mathematical physics in two dimensions,

* * *

In 1965 the reviewer received the APS-AIP Heineman prize for contributions to quantum field theory and the theory of the S matrix. He is at the Institute for Advanced Study.


Stimulating creativity

SPACETIME PHYSICS. By Edwin F. Taylor, John A. Wheeler. 208 pp. W. H. Freeman, San Francisco, 1966. \$4.75

by Jules Aarons

The collaboration on this sprightly book teams a senior professor (John Archibald Wheeler of Princeton) who has a distinguished career in research and in education with a younger man, Edwin F. Taylor, professor at MIT, who has a deep interest in teaching methods. The result is a free-wheeling text, forcing the student to wander beyond the readily apparent. Space and time relationships always appeared to me to be an interplay between concrete experimentation and the imagination; Spacetime Physics exemplifies this interplay perfectly, The subject matter and the presentation are beautifully matched. The authors move through scientific worlds lightly and imaginatively in the text, the format and the illustrations.

The textbook, in its illustrations and its problems, moves from a full discussion of Robert H. Dicke's experiment to the "large-pole-in-a-small-barn" paradox. The book was designed for the beginning college student in an honors physics course. It has been used in intermediate courses as well. A good high-school course in physics would be the least preparation necessarv even for the bright student since the examples given, although undemanding mathematically, presuppose a good physics background. The book contains a comprehensive index as well

LABORATORY CLOCKS compared with one rocket clock. (Spacetime Physics)

as end-paper tables of use to the students.

From the point of view of the research physicist such as the reviewer, the book is very well done. Its examples and problems range from space to nuclear physics. Its real advantage is that it directs the student into a creative mode in his study pattern leading into the creative aspects of science. Too often university

courses cause the student to expect that research-problem solving will be a pat succession of experiments and theoretical development. A course with this book will stimulate the student's awareness of creativity in science.

士

搬

钦

300

30

= 1

14

\$

2

14

4

fag

H.

Scip

Ti

de

Madin

The

41

* * *

The reviewer is chief of the radioastronomy branch at the Air Force Cambridge Research Laboratories.

Black box not opened

THE ANALYTIC S MATRIX: A BASIS FOR NUCLEAR DEMOCRACY. By G. F. Chew. 103 pp. W. A. Benjamin, New York, 1966. \$7.50

THE ANALYTIC S MATRIX. By R. J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, 287 pp. Cambridge U. Press, Cambridge, 1966. \$14.00

by Tullio Regge

The S matrix has played a key role in modern theoretical physics and many papers—time consuming computations with an occasional sprinkling of philosophy—have been dedicated to this vexing subject.

The physicist who in 1937 first conceived a rudimentary idea of the S matrix was John A. Wheeler, but Werner Heisenberg was the one who in 1943 realized its far-reaching possibilities in the description of elementary particles.

In the words of Eden and his coauthors, "The S matrix is an operator which connects the input and the output of a scattering experiment without seeking to give a localized description of the intervening events." In this way a physical system is treated like a black box that should not be opened unless we want to face the severe difficulties encountered in field theory. The program heavily relies of course on the contention that we never need to look inside the box and that a consistent theory of elementary particles can be worked out by way of the S matrix only.

For Chew this is an obvious requirement of any future theory and indeed the reward to be reaped would be enormous. There would be a drastic reduction in the number of variables needed for the description of the system. One would achieve a unified description of the world in which there would be no distinction between elementary and composite particles. In this sense a deuteron, any nucleus, even an atom would not be a more complicated object than an electron and composition would be replaced by a much milder statement about anomalous thresholds. This philosophy, if carried to its extreme consequences, would tend to represent even macroscopic systems, forgetting thermodynamics, on the same footing as elementary particles. In this sense they would be represented as a rather fabulous set of cuts and superanomalous thresholds in some unfathomable chapter of the analytic S matrix.

The theory is, however, not yet here, and to obtain information on the S matrix we have to go back to old field theory. This information can be classified as follows:

Relativistic invariance. Easy to reach by a covariant formalism. In this way we also take into account energy and momentum conservation.

Unitarity. As it involves nonlinear relations among matrix elements. These relations impose quite powerful constraints on the scattering amplitude which have not been completely exploited.

Analyticity properties. Evident in particular models discussed so far, these properties have been shown to be intimately connected with causality, that is, the fact that particles do not travel faster than light.

A complete, systematic and reliable list of analytic properties of the S matrix does not exist although several of them are clearly connected with the physical system under investigation. In his book Chew boldly proposes a few analyticity principles from which the S matrix should be uniquely and completely constructed. As far as we can see these principles are inspired by and in agreement with computations carried out in conventional field theory. What Chew is stressing, however, is that in holding onto these principles one should forget original sin and that we should go ahead and compute everything including, in principle, the collision of viruses in vacuo.

je.

905 2.65

UE

DES

1 (IP

此

1

曹 年 年 報 湯

100

en in a second s

Chew is neither so naive nor so inordinately bold to stake any claim on the viruses. Instead he applies his principles to the simplest physical systems in which his powerful physical insight has produced so much outstanding physics in the past.

The book is written in a highly personal but very clear style: "In absence of experimental evidence for strongly interacting aristocracies why should there be resistance to the notion of a complete nuclear democracy?" The author's view on the current status of the theory of the elementary particles

comes out quite transparently for those who are used to contemporary jargon in physics. I have the feeling, however, that the analytic S matrix has reached the stage at which qualitative ideas are simply not enough and that the methods and ideas of modern mathematics could be profitably used to achieve a simple and general treatment. Unfortunately from what I know of professional mathematicians they will find the book frustrating to In particular the analyticity principles are never stated explicitly but rather explained through specific examples. The reader is then invited to extract himself the generalization or is referred to other publications. Altogether the book makes for challenging and interesting reading. The examples are very well selected and clearly explained, and even those who do not agree with the general views will find lots of ideas to think about.

In 1959 Lev D. Landau published an extremely interesting paper in which he proposed a very simple method for the computation of the singularities of the scattering amplitude in perturbation theory. The Landau equations and later on a paper by Cutkosky injected new ideas in a field where they were, and still are, badly needed; the result has been a copious production of papers by many authors, notably

the British group at Cambridge of which Eden and his colleagues are well known exponents.

In this book the authors have tried hard to bring order in a subject that has been constantly growing in the years since Landau's paper; since they have contributed many interesting papers in the field, they are quite naturally biased in favor of their own methods but not at the expense of being disturbingly so. A rough estimate shows that about two fifths of the 160 odd papers quoted in the references come from authors connected with the Cambridge group. The book is divided into four chapters:

An introduction, where a sort of master plan is laid down for the whole book. Here one finds a survey of objectives and a preliminary explanation of the methods used in order to achieve the results.

Analytic properties of perturbation theory. This chapter contains a highly technical account of the Landau theory, probably the most extensive ever published.

Asymptotic behavior. This part of the book elucidates the link between the Feynman-Dyson expansion and the asymptotic behavior of scattering amplitudes by way of the complexangular-monentum plane as conjectured by Chew and many others.

Chapter 4 contains many scattered

Reviewed in This Issue

- 81 Lieb, Mattis, eds: Mathematical Physics in One Dimension
- 82 TAYLOR, WHEELER: Spacetime Physics
- 82 Chew: The Analytic S Matrix: A Basis for Nuclear Democracy
- 82 Eden, Landshoff, Olive, Polkinghorne: The Analytic S Matrix
- 87 HAHN: A Scientific Autobiography
- 89 Tegart: Elements of Mechanical Metallurgy
- 91 Jaki: The Relevance of Physics
- 93 Nobel Foundation: Nobel Lectures in Physics, Vol. 1: 1901-1921
- 93 Вяиян, ed: Kinetic Theory, Vol. 1: The Nature of Gases and of Heat
- 93 Cole, ed: Theoretical and Experimental Biophysics
- 95 Davies: Ionospheric Radio Propagation
- 97 COLODNY, ed:
 - Mind and Cosmos: Essays in Contemporary Science and Philosophy
- 99 PINES, NOZIERES:
- The Theory of Quantum Liquids, Vol. 1: Normal Fermi Liquids
- 101 RAO, HUMPHREYS, RANK: Wavelength Standards in the Infrared
- 103 Brand: Differential and Difference Equations
- 105 FLOOD, ed: The Solid-Gas Interface, Vol. 1

For quick access to theory, facts, formulas, methods—

THEORY OF ENERGY TRANSFERS AND CONVERSIONS

By FEDERICO GRABIEL, Space Systems Division, Hughes Aircraft. Presents a new unified theory that includes thermodynamics as a special case. The book handles dynamic processes throughout and studies phenomena at extreme values of the intensive parameters.

1967 217 pages \$10.95

MÖSSBAUER EFFECT INDEX 1958-1965

Compiled by ARTHUR H. MUIR, Jr., KEN J. ANDO, and HELEN M. COOGAN, all of North American Aviation Science Center. With a Foreword by Rudolf L. Mössbauer, Nobel Laureate.

An Interscience Book 1966 351 pages \$9.00

TABLE OF ISOTOPES

SIXTH EDITION

By C. M. LEDERER, J. M. HOLLANDER, and I. PERL-MAN, all of Lawrence Radiation Laboratory, University of California, Berkeley. A comprehensive review in tabular form of low-energy nuclear data. It represents a complete list of all the radioactive and stable isotopes of the elements, together with a number of their salient features.

1967 594 pages Paper: \$4.95

Cloth: \$7.95

PHYSICS AND CHEMISTRY OF II-VI COMPOUNDS

Edited by M. AVEN and J. S. PRENER, both of the General Electric Research and Development Center. Presents in a single volume, an account of the developments in the various fields of II-VI compound research.

A North-Holland (Interscience) Book

1967 844 pages \$30.00

TECHNIQUES OF VACUUM ULTRAVIOLET SPECTROSCOPY

By JAMES A. R. SAMSON, Geophysics Corporation of America. The first treatment, in almost forty years, of all the most important experimental methods used in the production, dispersion, and detection of vacuum ultraviolet radiation. The book describes in detail the basic elements associated with vacuum spectroscopy and contains references to all the major contributions in this field. A volume in the Wiley Series in Pure and Applied Spectroscopy.

1967 348 pages \$13.95

MAGNETIC SUSCEPTIBILITY

By L. N. MULAY, The Pennsylvania State University. "... outstanding... one of the clearest discussions of the subject that this reviewer has encountered."—Professor Sawyer, in Analytical Chemistry.

An Interscience Reprint

1966 134 pages \$2.95

INTERNAL REFLECTION SPECTROSCOPY

By N. J. HARRICK, *Philips Laboratories*. The first book devoted entirely to this new method of recording optical spectra. It systematically describes and discusses theory, instrumentation, and applications of the technique and provides the background necessary for the practical spectroscopist to apply the method to his own problems.

1967 327 pages \$16.50

SPATIAL DISPERSION IN CRYSTAL OPTICS AND THE THEORY OF EXCITONS

By V. M. AGRANOVICH and V. L. GINZBURG, both of the Academy of Sciences of the U.S.S.R. Translated from the original manuscript by Literaturprojekt, Innsbruck. The first book to systematically treat the subject.

Interscience Monographs and Texts in Physics and Astronomy, Volume 18. 1966 316 pages \$17.00

INTRODUCTION TO THE UNIFIED FIELD THEORY OF ELEMENTARY PARTICLES

By W. HEISENBERG, Max-Planck-Institut für Physik und Astrophysik.

An Interscience Book

1967 177 pages \$7.00

B AF

ST

DE

1455

120

Sign

1 has

SPECTROSCOPIC CALCULATIONS FOR A MULTIELECTRON ION

By H. H. THEISSING and P. J. CAPLAN, both at the U.S. Army Electronics Command, Fort Monmouth, N.J. Presents in very great detail the computations for a particular example—trivalent chromium—chosen not only because of its technical importance, but also because mastery of such a three-electron problem will provide sufficient skill to extend the computation to other atoms or ions.

An Interscience Book

1967 209 pages \$10.00

ANELASTIC AND DIELECTRIC EFFECTS IN POLYMERIC SOLIDS

By N. G. McCRUM, Oxford University; B. E. READ, National Physical Laboratory, Teddington; and G. WILLIAMS, National Bureau of Standards, Washington, D.C. A broad discussion of elementary topics together with a survey of progress made in the field of polymer physics.

An Interscience Book

1967 Approx. 540 pages Prob. \$23.50

THE CONSTITUTION OF GLASSES

A Dynamic Interpretation

Volume II, Part Two: Constitution and Properties of Some Representative Glasses

By WOLDEMAR A. WEYL and EVELYN CHOSTNER MARBOE, both of The Pennsylvania State University.

An Interscience Book 1967 690 pages \$27.95

John Wiley & Sons, Inc.

Try these

Wiley and INTERSCIENCE books

PERSPECTIVES IN STRUCTURAL CHEMISTRY

VOLUME 1

Edited by J. D. DUNITZ, Eidg. Technische Hochschule, Zürich, Switzerland; and J. A. IBERS, Northwestern University. The first volume in a new review series. The editors' goal is to make this the place to look for authoritative reviews on all the metrical aspects of structural chemistry.

1967 199 pages \$9.95

COLOR SCIENCE

CONCEPTS AND METHODS, QUANTITATIVE DATA AND FORMULAS

By GUNTER WYSZECKI, National Research Council of Canada; and W. S. STILES, formerly of the National Physical Laboratory, England. This book is the comprehensive source of information on physical data required by the practical and theoretical worker. The authors have assembled the quantitative tools for work on color, devoting special attention to data on light sources and optical filters.

1967 628 pages \$27.50

THE GROWTH OF KNOWLEDGE

Edited by MANFRED KOCHEN, The University of Michigan. A stimulating collection of essays that invites the reader to examine the goals of computer technology.

1967 394 pages \$14.95

SPECTROSCOPY

\$111

ECTS

Wide.

By D. H. WHIFFEN, National Physical Laboratory, London. Covers all the important principles, the main features of experimental technique, some examples of applications to chemistry, and sufficient nomenclature to prepare the student for more advanced reading.

1966 205 pages \$4.25

INDEX AND BIBLIOGRAPHY OF MASS SPECTROMETRY 1963-1965

Compiled by F. W. McLAFFERTY and JOHN PINZELIK, both at Purdue University. Contains a review of the literature on mass spectrometry for 1964 and 1965; a bibliography covering the recent mass spectrometry literature on a much broader scope than that in the review; and a keyword-in-context index and an author index to this bibliography.

1967 176 pages \$12.00

TABLES OF PHYSICAL AND CHEMICAL CONSTANTS

AND SOME MATHEMATICAL FUNCTIONS

Originally compiled by G. W. C. KAYE and T. H. LABY.

Now prepared under the direction of an editorial committee.

1966 249 pages \$5.75

605 Third Avenue

EXPERIMENTAL METHODS OF MATERIALS RESEARCH

Edited by HERBERT HERMAN, University of Pennsylvania. The first volume in a new series, Advances in Materials Research. The series establishes a forum for up-to-date accounts of progress, both theoretical and experimental, in materials science. The results of recent research are made readily available in the form of comprehensive and critical review articles. Advances in Materials Research, Volume 1.

An Interscience Book

1967 316 pages \$14.95

THE THEORY OF THE ELECTRIC AND MAGNETIC PROPERTIES OF MOLECULES

By D. W. DAVIES, *University of Birmingham*. Discusses from a unified point of view the quantum-mechanical theory underlying the electric and magnetic properties of molecules, and the methods available for calculating these properties.

1967 279 pages \$10.00

LINEAR VIBRATION THEORY

GENERALIZED PROPERTIES AND NUMERICAL METHODS

By JAMES B. VERNON, University of Southern California. Provides a thorough treatment of the practical use of generalized coordinates, forces, masses and other generalized properties in the investigation of the response of complex linear systems, and gives an accurate account of numerical analysis in the solution of vibration problems.

1967 365 pages \$19.95

GENERALIZED NETWORKS

Edited by JEROME FOX, Polytechnic Institute of Brooklyn.

Microwave Research Institute Symposia Series, Volume XVI.

An Interscience Book 1966 789 pages \$18.00

PHYSICAL CHEMISTRY OF SURFACES

SECOND EDITION

By ARTHUR W. ADAMSON, University of Southern California. This revised and updated edition is more concentrated and quantitative in content than the first. Although it follows the same general style, it has been expanded to include 40% more references and almost four times as many problems.

An Interscience Book

1967 747 pages \$15.00

INTRODUCTION TO THE OPERATIONAL CALCULUS

By LOTHAR BERG, University of Halle. Volume 2 in the North-Holland (Interscience) Series Applied Mathematics and Mechanics. 1967 294 pages \$12.00

New York, N. Y. 10016

Return to Research in Britain

Are you a British Scientist in North America thinking of returning to work in Britain? You may find what you are looking for, without having to go home first, in the Civil Service, the United Kingdom Atomic Energy Authority, or the Central Electricity Generating Board.

Research Fellowships and Permanent Appointments

There are openings in most branches of science. The order in which they are most numerous is (i) physics, mathematics, engineering, and materials science; (ii) chemistry; (iii) biochemistry. The research ranges from the most fundamental to the most applied. Payment of fares (including family) to the United Kingdom will be considered.

A Selection Board of scientists will be visiting centres as follows:-

WASHINGTON

8th to 22nd November, 1967

NEW YORK

- 27th November to 8th December, 1967

OTTAWA

16th January to 2nd February, 1968

CHICAGO

19th March to 5th April, 1968

SAN FRANCISCO

11th April to 8th May, 1968

If you would like to see them would you please write to one of the following at least six weeks, if possible, before the Board's arrival at the Centre nearest to you.

For Candidates in the U.S.A.

Mr. R.G. Voysey, Director, United Kingdom Scientific Mission, British Embassy, Washington 20008, D.C.

For Candidates in Canada

Dr. A. Huggard, Senior UKAEA Representative in Canada, P.O. Box No. 1245, Deep River, Ontario.

Issued jointly by the Civil Service Commission, the U.K. Atomic Energy Authority, and the Central Electricity Generating Board

topics concerning S-matrix theory including unitarity, Lorentz invariance, TCP, crossing, unstable particles.

Comparison with Chew's book having the same title is unavoidable and quite instructive. It is quite evident that Eden and his colleagues have tried to deemphasize the philosophical content of the theory and to avoid high-brow discussions on the future of the theory of elementary particles. Their aim has been mainly technical and they have written a book for the young physicist who wants to reach a professional level through a detailed knowledge of the relevant methods and also for the not-so-young who wants a useful reference book. spite the title the work of Eden et al does not overlap with that of Chew although in principle they speak on the same subject, using the same methods. Although I think it is not the fault of the authors, I am personally unsatisfied by the status of the theory expressed in chapter 2. My feeling is that chapter 2 will have to be replaced in the future by more advanced techniques borrowed from algebraic homology. In spite of interesting attempts in this direction by Pham, Fotiadi, Lascoux, Froissart and others we are far from having achieved anything worth using as a replacement.

Until that day the best we have is a sort of heuristic theory that becomes rapidly inadequate for higher-order graphs. The book is in general written in a clear and satisfactory style. It contains however some clearly wrong or misprinted formulas (for example 1.5.34, page 36), and there is a definite tendency toward neglecting the "constant multiplicative factors" in

writing integrals (2.2.1, page 51); this tendency is quite excusable during a spoken lecture but I do not like it in a widely published book.

Apart from these minor flaws the book fills quite efficiently an existing gap in the literature. It is not, as should be clear by now, a general treatise on field theory; for it does not deal with topics like Wightman axioms, local algebras, function spaces, distributions, etc., but these are adequately covered in the existing literature. In its own field, however, it will be an extremely useful book for many years.

Tullio Regge, professor at Turin University and permanent professor at the Institute for Advanced Study, received the 1964 APS-AIP Heineman Prize for "introducing into particle theory the concept of analytic continuation in angular momentum."

The history of radioactivity and nuclear fission

OTTO HAHN: A SCIENTIFIC AU-TOBIOGRAPHY. Translated and edited by Willy Ley. 296 pp. Scribner's, New York, 1966. \$7.95

by R. Bruce Lindsay

A well written autobiography of a celebrated scientist can not fail to be of interest to the scientific community since it is almost sure to provide some historical perspective on the field of activity of the scientist and may occasionally give insight into his research methods. When the field is that of nuclear chemistry and physics and the author is the distinguished codiscoverer of nuclear fission, the relevance of the work would appear to make it particularly attractive to scientists and laymen alike. This is indeed a readable book though it must be stressed at the outset that it leans very heavily on the rather detailed description of the author's scientific researches and tells less of his personal life than most readers expect to find in an autobiography.

Otto Hahn started his professional career as a more or less routine organic chemist with the expectation of a life in industrial research. It was indeed a lucky accident that led him to be sent to England in 1901 to work in Sir William Ramsay's laboratory in University College, London. His firm sent him

ostensibly "to learn English," but he learned far more than the language; for Ramsey set him to work on the chemistry of the newly discovered radioactive materials. This was the beginning of the scientific preoccupation which has marked the whole of Hahn's career.

This volume traces the story of the author's visit to Ernest Rutherford's laboratory at McGill University in Montreal in 1905-06 and his interesting researches on thorium there. On his return to Germany he became a member of the Chemical Institute of the University of Berlin and for six years continued his work on nuclear chemistry but at the same time gradually got more involved in physical research through his scientific collaboration with the physicist Lise Meitner, a coöperative venture that had important scientific consequences. With the founding of the Kaiser Wilhelm

OTTO HAHN has been called "the father of radiochemistry and its more modern offspring, nuclear chemistry."