in many fields of pure research but also he was not uninterested in practical applications in industry. He felt the importance of teaching not only in the classroom but in writing stimulating books and beyond that in the administration of his university. At the same time he never lost his interest or taste for the other aspects of life: his family, the arts and his obligations as a citizen of his country.

Bitter and I were graduate students at Columbia during the exciting period 1925–28 when the world of physics was reborn with the invention of quantum mechanics. It was a wonderful time to be a graduate student with a lifetime before one for research and study and the exciting task of remaking the old physics and bringing

BITTER

on the new. One somehow pities those who were born too late or too early to share in the excitements of those revolutionary times. Bitter writes of those days in his delightful little book, Magnets, The Education of a Physicist.

We both did our dissertations with Professor A. P. Wills whose field was magnetism. Bitter's dissertation was on the magnetic susceptibility of gases and mine on the magnetic susceptibility of crystals. He later moved to ferromagnetism and the solid state while I moved over to molecular beams which are a very attenuated form of gas, but our primary interests never strayed very far from the charms of magnets and magnetism.

Bitter's family background was more in the arts and in the theatre than in science; his father was the famous sculptor, Karl Bitter, whose lovely bronze surmounting the Fountain of Plenty in the Plaza is one of the landmarks of New York. Perhaps this is one reason why his science was imbued with the wholeness of physics and showed great sensitivity both technically and esthetically to the variety of its aspects.

An experimental physicist, his methods were always elegant, such as his discovery of the simple way of exhibiting magnetic domains. His interest in high magnetic fields led him to a magnetic design which displays the same quality of simplicity, elegance and practicality. The National Magnet Laboratory at MIT in Cambridge will remain as a memorial to this phase of Bitter's scientific interest, his inventiveness and practicality.

Bitter's pioneering work in optical and magnetic resonance was another example of his imagination, insight, and his instinct for the important problem of physics. His application of the combination optical and magnetic resonance methods to study hyperfine structure and isotope shift was original work which gave new possibilities for research in this important field. These pioneer researches demonstrated the great utility of Kastler's invention of 'optical pumping.'

A quiet and reserved man, his great qualities were fully appreciated by only a few, but his contributions to physics will continue to advance the science for a long time to come.

> I. I. Rabi Columbia University

Mabel Katherine Frehofer, Was Professor at Goucher

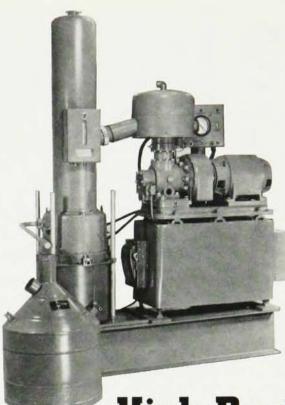
On 10 May Mabel Katherine Frehofer died suddenly of a heart attack at the age of 80. She received her BA from Bryn Mawr College in 1908 and her MA from the University of Wisconsin in 1909. She was a demonstrator in physics at Bryn Mawr College from 1910 to 1914, assistant professor at the University of Wisconsin from 1914 to 1916 and instructor at Mt. Holyoke College from 1916 to 1918. She received her PhD from Johns Hopkins University in 1919, after which she went to the National Bureau of Standards to fill the positions of assistant and associate physicist from 1919 to 1923. From there she returned to

teaching, becoming professor of physics at Wilson College (1924–25) and then to Goucher College, where she remained until her retirement as professor emeritus of physics in 1952.

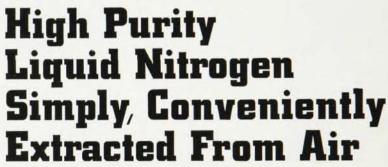
Paul C. Aebersold Dies, Was Authority on Radioisotopes

Paul C. Aebersold, a pioneer in the peaceful uses of atomic energy for medical and other purposes, died on 29 May. He was formerly director of the Division of Isotopes Development at the Atomic Energy Commission.

He received an AB at Stanford and as a graduate student at the University of California was a member of a group under Ernest O. Lawrence that developed the cyclotron. He participated in the production and application of the first radioactive materials (sodi-



AEBERSOLD


um and phosphorous) administered to human beings in the late 1930's. After receipt of his doctorate in biophysics in 1938, Aebersold continued his work with radioisotopes and also investigated properties of biological reactions resulting from fast-neutron beams. As a research associate in the Radiation Laboratory at Berkeley, he was in charge of operating the 60-inch eveloton.

In 1946 Aebersold was asked to transfer from Los Alamos Scientific Laboratory to Oak Ridge to become chief of the isotopes branch, in the Manhattan Engineering District's Division of Research.

Aebersold and the isotope-development program were transferred to AEC headquarters in 1957, where he continued until his retirement. AEC chariman, Glenn T. Seaborg, in tribute said, "Paul Aebersold made many valuable contributions to the nation's

Basic Model A
Liquifier provides
high reliability, low
maintenance, troublefree operation. Added
fractionation column
provides contaminantfree liquid nitrogen.

Fully automatic push-button generator system produces cryogenic liquid for on-site needs.

Basic Norelco A & B Cryogenerator® units efficiently supply liquid air in quantities sufficient to meet the needs of most industrial, scientific and technological applications. In-plant or laboratory installations provide the incomparable convenience of continuous or intermittent supply, eliminating temporary shortages or dependency from outside sources.

Where liquid nitrogen is essential, economically produced quantities may be as easily obtained by adding an air separation column which produces free-flowing 99.5% (minimum) pure liquid nitrogen from fractionation without compression or moving parts — assuring freedom from impurities.

Units require only spot-check — all functions and control devices perform automatically. For nitrogen production, Model A provides a nominal output of 7 liters per hour. Model B — 28 liters per hour.

We produce numerous sophisticated systems. Most recent is a 4 pound miniaturized Cryogem® unit which, with infrared sensing, provides daylight clear vision in the black of night. Non-destructive quality testing employing refrigerated infrared sensing is fast growing in industry.

Whenever you run into a cryogenic problem call us. We have a vast engineering competence extending from "packaged" through custom designed systems. Invite us to help solve your problems.

Plant Photograph Nitrogen Cryogenerator units

NORTH AMERICAN PHILIPS COMPANY, INC. Post Office Box 2200, Ashton, Rhode Island 02864

Career Appointments

New Perspectives in

Cost-Benefits Analysis

Booz · Allen Applied Research has a significant record of achievement in bringing valid new perspectives to questions of optimum cost vs. optimum value. Current work in costbenefits and cost-effectiveness analysis spans a wide spectrum: scientific space satellites . R&D facilities for space activities, and preflight checkout buildings . . . mass rapid transit (ground and waterborne) . . . naval and army logistics and army maintenance. And these are only the latest of programs dating back more than a decade and ranging from submarine communications to air-launched space-

If you are intrigued by costbenefits problems of national and international importance, and can bring us appropriate skills and perspectives, consider a career with Booz•Allen Applied Research. Requirements include an advanced degree (or bachelor's degree and 3-5 years' experience) in mathematics, statistics, economics, a physical science or engineering. Please write Mr. Robert B. Flint, Director of Professional Appointments.

BOOZ · ALLEN APPLIED RESEARCH inc.

135 South LaSalle Street Chicago, Illinois 60603 An equal opportunity employer WE HEAR THAT . . .

atomic-energy program, particularly in the field of radioisotopes."

Yong-Son Jin, Was Professor at Brown

On 24 June Yong-Son Jin died at his home in North Providence, R. I. at the age of 39. A specialist in theoretical high-energy physics, he had been on the staffs of CERN in Geneva and the Institute of Advanced Study at Princeton, before coming to Brown in 1965. Born in Seoul, Korea, Jin earned his BS and MS at Seoul National University and a doctorate from the University of Hamburg, Germany, in 1962.

Robert O. Carpenter Dies, Was Research Physicist

Robert O.B. Carpenter, an authority on infrared and atmospheric physics, died on 18 June at his home in Lexington, Mass., at the age of 46. After graduating from Baylor University in 1941, he did graduate work at Johns Hopkins University for one year and completed a year of study at the Harvard Law School. He received an MA in physics in 1946, and his PhD in 1951, both from Harvard.

Ted J. Morgan Dies, Was Nuclear Physics Professor

Ted J. Morgan, technical director of the nuclear physics laboratory at the University of Washington, died on 24 May at the age of 58. Morgan came to the university in 1950 and was largely responsible for the construction and successful operation of the university's 60-inch cyclotron. More recently he was in charge of design, construction and installation of the laboratory's three-stage Van de Graaff accelerator.

Born in Cle Elum, Washington, Morgan graduated from the University of California, Berkeley, in 1937. Before the war he was associated with the Berkeley Radiation Laboratory and later joined the Manhattan Project. He worked for the Tennessee Eastman Corporation in Oak Ridge until the end of the war, when he moved to Seattle to be a research engineer for the Boeing Company.

OVER 30 YEARS OF SCIENTIFIC ACHIEVEMENT

THE MOST COMPLETE NUCLIDE SOURCE SELECTION OF ALL!!!!!!

The nuclide sources and standards available from Baird-Atomic allow you the complete, comprehensive selection you need! They are reasonably priced to permit use at all levels of educational and scientific effort. Nuclides are immediately available for the following:

ALPHA SOURCES
Polonium 210
Uranium 238

Americium 241

BETA SOURCES

Carbon 14 Promethium 147 Technetium 99 Chlorine 36 Thallium 204 Bismuth 210 Strontium 90 Protactinium 234 Nickel 63 Phosphorous 32 Calcium 45 Sulfur 35

GAMMA SOURCES

Cadmium 109 Cobalt 57 Barium 133 Cesium 137 Manganese 54 Sodium 22 Cobalt 60 Iron 59 Zinc 65 Iodine 131

All of the nuclides above are available in either calibrated or uncalibrated form in the following configurations:

- STANDARD SOLUTIONS
- REFERENCE DISCS
- SPECTROSCOPY STANDARDS
- EDUCATIONAL SOURCES

CUSTOM SOURCES & STANDARDS, TOO!

Baird-Atomic's comprehensive abilities allow you to specify sources and standards to the custom requirements of configuration, size, activity and nuclide. They are manufactured expediently and economically. Let our technical staff prepare the exact sources and standards you require!

FRARI

Write for this complete, comprehensive catalog, today!

RADIOACTIVE SOURCE DIVISION

33 UNIVERSITY ROAD, CAMBRIDGE, MASS. 02138
Tel: 617 864-7420
SALES OFFICES IN MAJOR US CITIES AND EUROPE