Ge(Li) beans

SOMETHING TO CHEW ON.

Societies and deferments

If deferments for graduate students and occupational deferments are ended, we may find the science departments in our universities vacated and our research laboratories depleted of their young scientists. I hope this dismal prediction is extremely pessimistic, but so far I have heard no really convincing evidence to the contrary. If the war continues for several years, it could create a scientific vacuum that would be extremely damaging to our country. The most amazing fact about this situation is that to my knowledge none of our nation's prominent scientists or scientific societies has offered anything but token resistance to the proposed changes in our draft law and its execution. I have waited in vain to hear some testimony opposed to the ending of graduate-student and occupational deferments before the Congressional committees investigating the Selective Service System. As scientists we have an obligation to the American people to inform them of the vital importance of maintaining a strong scientific community in this country. It must be made clear to the general public that the best possible way for a scientist to serve his country is by doing good science. If we fail to do this, we have only ourselves to blame for any deterioration of science that results.

G. P. HUFFMAN U. S. Steel Corp.

Student laboratories at MIT

In his July letter Enos R. Wicher of Harvey Mudd College asks about my statement in your March issue, "There are no laboratories connected with introductory courses at MIT." In answer I should explain that the standard fixed-format laboratories have been replaced by project laboratories where the student gets much more deeply immersed in a continuing project rather than working on isolated bits and pieces of experimental activi-

ties. There was no intention on the part of the faculty to decrease the student's contact with the real world but rather to make it more realistic and of greater educational value. Experimental experience is certainly essential to physical science, and the intention of the MIT curriculum is to provide the broadest range of experimental experience through demonstrations, corridor experiments and the deeply involving project laboratory.

ROBERT I. HULSIZER Massachusetts Institute of Technology

Let's pay referees

There has been considerable verbiage in PHYSICS TODAY about the population explosion in publications, but the solutions always lack the boldness necessary for a significant arrest of this expansion. One question that requires an answer is, What should be published? Unless something like a dozen authors refer to a specific paper in the decade following its publication, the paper might just as well have remained unpublished (of what use has it been?). My own casual assessment of The Physical Review since the war is that over half of the papers have not met this requirement so that a reduction in the number of papers by at least a factor of two should be sought. But how can this be accomplished? The answer lies in a considerable improvement in refereeing, and this can only be accomplished by paying referees for their time. Since the average research paper costs in excess of \$25 000, I believe that a \$500 nonreturnable deposit (about 2% of the cost of the research) should accompany every submission. For one thing, such a procedure assures us that the institution sponsoring the author will attempt to meet the required standards by some internal system of refereeing. (This \$500 deposit will, no doubt, also reduce the number of submissions, prima facie.) If the bulk of this \$500 is used to pay the referees, we can then require a first-rate job of

Five steps to improve energy resolution

Some things to check in order to get optimum performance from a Ge(Li) detector:

- Minimize leakage current; remove moisture from all connectors.
- Use an FET preamp with selected FET's; you may have to check out five to find one.*
- 3. For large volume detectors, use three or four FET's in parallel at the input.*
- Select the main amplifier time constants to obtain best resolution.
- 5. Adjust (where possible) the ADC of the pulse height analyzer to accept the output pulse shape from the main amplifier.

Of course, there's a sixth step. You must start out with a high-resolution detector.

Typical intrinsic energy resolution for all our Ge(Li) detectors is better than 3 keV at Co⁶⁰.

Whatever the active volume or detector geometry may be, you should get this kind of performance. Our planar detectors (up to 15 cm³) achieve it. So do our cylindrical detectors (up to 30 cm³). And so do our five-sided coaxial detectors (up to 40 cm³). Test spectra at Co⁶⁰ are furnished with each detector.

If you have a Ge(Li) detector that is not giving you excellent resolution, call us. We'll be glad to give you our best advice. Even if it isn't one of our detectors. And send for a copy of our GUIDE TO THE USE OF Ge(Li) DETECTORS.

*If you prefer, we can supply a complete detector-cryostat-preamplifier system with guaranteed performance.

PRINCETON GAMMA-TECH

Box 641, Princeton, New Jersey, U.S.A. (609) 924-7310. Cable PRINGAMTEC.

"Can I make the computer do the job?"

When buying a computer, the most important question a scientist asks is: "Can I get it to do the job?"

In physics, in chemistry, in life and earth sciences, there have been more than 500 yesses for the PDP-8.

More yesses than for any other real-time, on-line, general purpose computer for science.

That should give you confidence. More than 500 other scientists have written programs that work. The potentialities (and limitations) of the PDP-8 have been exhaustively explored. There is an active and interested community of investigators ready to exchange

information, techniques, even programs.

This makes PDP-8 the most immediately approachable computer you can buy.

Here are some other important questions — and answers: Q: How much? A: \$18,000 complete. Q: When available? A: 30 to 90 days. Q: How much speed? A: 1.5 µsec. Q: How much memory?

A: 4096 12 bit words, Q: Do I get a bear for added security? A: Only if requested.

Send for your copy of our 540 page Small Computer Handbook and Primer, Free.

LETTERS

them, and only by their continued conscientiousness can referees expect to be utilized by the editors. (We can also expect some keen competition among referees.)

Such a policy may reduce the size of *The Physical Review* to less than that of physics journals not requiring such high standards of refereeing. But then, I assume *The Physical Review* doesn't want to be the biggest—only the best.

RICHARD J. WEISS US Army Materials Research Agency

Educational competition?

The special March issue on introductory physics education must lead to speculation on the nature of future physics courses and on the directions to be taken by new curriculum-development groups. That we are soon to have a variety of approaches for teaching physics is a most exciting prospect. At last a teacher has options from which to choose a course (or courses) that best suit him and his pupils.

I am surprised by reference in the lead article of this issue to "the status of PSSC's prospective competitor, Harvard Project Physics." I prefer to think of these courses not as competitive but as complementary, designed to reach different segments of the high-school population.

I see these four courses sitting with equal rank on my bookshelf, with room for those new ones still to come. This kind of innovation and the opportunity for choice must pay off in better physics matched to the needs of more pupils. As we meet the needs of more young people, more of them will *elect* to take the course.

We cannot afford to regard new science courses as competitors. Competition infers selection of the "best" and places new hurdles in the path of the teacher. We should not encourage teachers to become disciples of a particular creed, but rather we must help them to be flexible, selective and innovative in their use of new materials.

ROBERT D. HAAS Clairemont (Calif.) High School □

TÉNNELÉC

designed a new precision pulser. It's so stable, we use it to calibrate our own instruments.

TC 800 precision mercury relay pulse generator.

П

ı

ı

ı

For high-resolution nuclear spectrometers. Setup, calibration, proof-of-performance, trouble-shooting. Off-the-shelf delivery. Write or phone for complete technical details.

Name		
Company		
Address		

City____State___Zip____

Tennelec, Box D, Oak Ridge, Tenn. 37830, USA Telephone (615) 483-8404. Cable TENNELEC.