type-I and type-II SC-formerly called soft and hard SC respectively. This is followed by a chapter devoted to type-I SC, which is similar to that found in the books by Lynton, Rickayzen, Schrieffer and Blatt. Chapter 3 is unique in its long and clear treatment of type-II SC including a discussion of the vortex state of Abrikosov. Since 1963, tutorials on type-II SC have appeared in the literature, but this is the only book that contains a detailed discussion of them. Chapters 4 and 5 may be said to be the heart of the There the assumed electron condensation is analyzed in detail using the microscopic viewpoint following the BCS theory and Bogoliubov's self-consistent field method. The Landau-Ginsburg equations are discussed in chapter 6 and applied to bulk material, thin films and SC junctions in chapter 7. The last chapter is devoted to the effects of strong magnetic fields, magnetic impurities and gapless SC.

The necessary background for understanding this graduate textbook is familiarity with the contents of the third edition of Kittel's superb book on solid-state physics, a modern course in statistical physics (Reif) and quantum mechanics (Merzbacher). De Gennes eschews Feynman diagrams, Green's functions and other sophisticated techniques of the physics of the many-body problem and as the result his book will be especially attractive and intelligible to experimentalists.

The faults of this book are minor. The two-page index is practically useless and should have been expanded to at least a dozen pages to be of any value. The printing, though legible, is not a professional job. There are numerous misprints and algebraic errors, which can be rather annoying to a fastidious reader. Nevertheless, this reviewer does not hesitate to warmly recommend this book to those interested in a concise, coherent, physical and modern treatment of superconductivity.

* * *

This reviewer is a member of the mathematical physics department of the Stanford Research Institute.

Mathematical savoir faire

MATHEMATICS FOR PHYSICISTS. By P. Dennery, A. Krzywicki. 384 pp. Harper & Row, New York, 1967. \$12.95

by Garrison Sposito

A good argument can be made for the position that theoretical physics may soon be quite incomprehensible to the undergraduate scientist or engineer whose mathematical savoir faire does not transcend the content of traditional courses on advanced calculus and differential equations. Without at least some introductory ideas about the theory of groups and their representations, linear operators and function spaces, generalized functions, Lebesgue integration, and Green's functions, most of what has been going on recently in physical theory-in particular the numerous contributions that have been made by mathematiciansbecomes an undecipherable arcanum. It follows that the mathematical content of the advanced undergraduate science curriculum, at least in the fields closely dependent upon physics,

should be updated. In *Mathematics* for *Physicists*, Dennery and Krzywicki have attempted, with success, to do just this.

The book is divided into four long chapters on functions of a complex variable. finite-dimensional space, function spaces and differential equations, respectively. The authors list as the only prerequisites to understanding the material, a knowledge of the calculus and an exposure to elementary vector analysis and the theory of algebraic equations. To this the reviewer would add introductory differential equations, functions of a complex variable, and either a smattering of mathematical sophistication or a feeling for abstract analysis.

The chapter on analytic functions is long, well written, and rather complete. In particular, it contains useful sections on conformal mapping and the evaluation of integrals, including the method of steepest descent. The chapter on linear spaces is good, but not excellent. The detracting aspects

Electronics for Light Measurement

PHOTOMETERS

A complete line of photometers for such applications as:

- integration and digitizing by means of current to frequency conversion
- -demodulation of chopped light signals
- accurate and stable current measurement for recorder drive

COOLABLE PMT HOUSINGS

New, inexpensive (from \$245) COOLABLE photomultiplier housing to operate S-1 cathodes, such as 7102, at dry ice temperature, with quartz window, top loading, fog-free operation and 12 hour run on one load of dry ice.

Also-

STANDARD HOUSINGS for all leading photomultipliers, SPECIAL HOUSINGS for larger tubes and VOLTAGE DIVIDER NETWORKS.

PACIFIC PHOTOMETRIC INSTRUMENTS 3024 Ashby Ave. Berkeley, Calif. (415) 848-1141

PHYSICISTS ENGINEERS MATHEMATICIANS

Engineering-Physics Company, founded in 1960, is now growing into new fields of research and development. Singular opportunity exists for scientists and engineers who have the resourcefulness, imagination, and technical background to assume a responsible role.

Project emphasis is in:

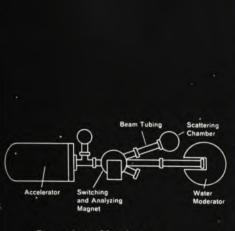
Instrument Development
Electromagnetics
Mechanics
Magnetohydrodynamics
Shock Hydrodynamics

Address inquiries to Robert M. Kimzey, Jr.

ENGINEERING-PHYSICS COMPANY

12721 Twinbrook Parkway Rockville, Maryland 20852 (Suburban Washington, D.C.)

An equal opportunity employer.


What happens when a grad student closes his textbook and starts an experiment on the accelerator? Checks the vacuum system. Then the electronic instrumentation. Pours liquid nitrogen. Reads digital printouts. Strings wires. (Oh! the wires.) Checks connectors. What has this got to do with nuclear theory?

Plenty. It's the *doing* of physics, which is essential to the knowing of physics. This graduate student will confirm for himself the basic discoveries that built modern physics. And he will earn the right to move up to larger accelerators where further original work is waiting.

Van de Graaff accelerators are ideal for training because even the least expensive ones (0.4 and 2 MeV) produce particles at precisely controllable energies: protons, deuterons, alpha particles, electrons, neutrons, and photons. The largest Van de Graaffs extend nuclear structure investigation to the binding energies of the heaviest elements.

Think acorns.

Complete Nuclear Physics Teaching Laboratory

At last! An accelerator-based teaching system for less than \$50,000. A lot less if you already have some of the electronics.

By system, we mean first, the equipment: a 400 KeV Van de Graaff accelerator, vacuum equipment, magnet, scattering chamber, detectors, radioactive sources, support electronics, pulse height analyzer, and radiation monitor.

Second, our teaching manual: 30 graded experiments in nuclear physics, explained step by step, enough to fill a 3-semester laboratory course. By then the student will have performed the fundamental experiments of nuclear physics and encountered a great deal of quantum mechanics, atomic physics, and solid state physics.

Research? Yes. In nuclear physics, solid state physics, atomic physics, and activation analysis. The magnet provides for additional research stations where your staff and graduate students can do original work.

It's everything a teaching /research system should be: simple to operate, virtually maintenance-free, easily modified for different experiments, low initial cost, expandable with optional equipment.

Our booklet, "The Van de Graaff Nuclear Physics Teaching Laboratory," shows just how this equipment and course book combine theory and practice in the modern physics curriculum. We'll be glad to send it to you.

\mathbb{H}_V	HIGH VOLTAGE ENGINEERING Burlington, Massachusetts
Nan	ne
Posi	tion
Orga	nization
Addi	ress

Zip_

have mostly to do with pedagogy. For example, the centered dot is employed at one time or another to represent ordinary multiplication, the scalar product, multiplication by a scalar and the product of operators. The Dirac symbol | 0) is introduced for the null vector, then immediately replaced by 0, the symbol just introduced as the scalar "zero." These things are likely to be confusing to an inexperienced reader. Along the same line, the authors occasionally have the bad pedagogical habit of making a new definition, then immediately generalizing it or otherwise indicating its inadequacy. The opposite extreme occurs, however, when they define the symbol sup to be "the upper limit." Certainly the undergraduate who has been through calculus can be told about least upper bounds. On the other hand, it should not be inferred that the chapter is hard to read. The sections on linearoperator theory, the eigenvalue problem and matrix algebra are carefully done and should be of great value to the reader with a knowledge of quantum mechanics.

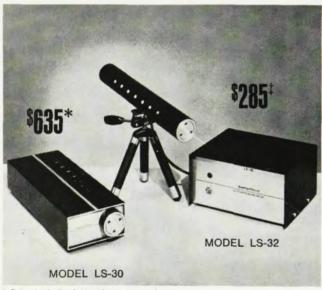
The chapter on function spaces is very good. In it, along with a unique and excellent introduction to the "special functions," are to be found a tiny but heuristic section on the Lebesgue integral, a section on generalized functions (more popularly called "distributions") and one on linear operators in Hilbert space. The chapter on differential equations is also well done. Green's functions are discussed for both ordinary and partial differential equations. Included as well are four sections on the hypergeometric equation-in a sense an extension of the discussion in the third chapter on orthogonal polynomials-and the standard methods for dealing with partial differential equations.

Mathematics for Physicists should be quite useable as a text for courses on applied mathematics for scientists or as a supplementary text for courses on quantum mechanics. The misprints, common to all new books, are small in number and not lethal to undergraduate understanding. However, three improvements might be suggested for future editions: the introduction of group theory into the second chapter (where it is all but done anyway), an increase in the size of the

Maybe it's been five weeks since you ordered vacuum components from the machine shop. Maybe three? Maybe six? When they come, chances are rework will be needed. Because machining stainless flanges and welding joints under vacuum are not the easiest things in the world to do.

Meanwhile you wait.

A quicker way is to order from our complete catalog of in stock 2-inch and 4-inch high vacuum stainless components. They go together fast and always fit. Quick opening couplings for quick-change systems. Maintenance free in most laboratory environments. Pickled satin smooth inside, ultrasonically cleaned and leak tested. Bakeable.


You'd think a lot of money was involved. Actually our stainless components cost less than most other plumbing. Let us send you our new catalog. Why wait?

Waitless Stainless

HIGH VOLTAGE ENGINEERING
Burlington, Massachusetts

QUALITY, LOW-COST, HIGH-PRODUCTION HeNe Gas Lasers

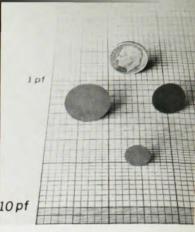
* Price includes integral power supply
‡ Price includes power supply (tripod available as extra-cost option)

Typical Power Output (6238 A)

Model Model LS-30 LS-32

Single mode uniphase wavefront 2.0 mw 1.5 mw

Multimode multiphase wavefronts 5.0 mw 3.0 mw


Operating life of 2,000 hours guaranteed. Send for brochure containing complete specifications.

QUANTUM PHYSICS DIVISION ELECTRO-NUCLEAR LABORATORIES, INC.

115 Independence Drive, Menlo Park, Calif. 94025; (415) 322-8451

TYPE 612 SILICON OPTICAL DETECTOR featuring

- Ultra low capacitance
- \bullet Quantum efficiency 40% to 60% at 1.06 μ

TYPE 654 SILICON OPTICAL DETECTOR featuring

- · Ultra low capacitance
- · Rise time 20 nanoseconds
- Quantum efficiency 60% to 80% at 1.06 μ
- · Hermetically sealed package

For information on higher quantum efficiency, special sizes, shapes, and mosaics, write or call:

ELECTRO-NUCLEAR LABORATORIES, INC.

115 Independence Drive, Menlo Park, Calif. 94025: (415) 322-8451

LOW-COST SILICON PHOTODIODE

ENL TYPE 626 SILICON OPTICAL DETECTOR features:

- High quantum efficiency and/or D*
- · Fast response or fast rise time
- · High reliability
- Hermetically sealed TO-18 package with lens
- · Ideal for card and tape readers, encoders, fusing, and ranging
- High production large stock item
- Unit price, 626A, \$9.94; for 626B, \$24.95

For further information, write to:

ELECTRO-NUCLEAR LABORATORIES, INC.

115 Independence Drive, Menlo Park, Calif. 94025; (415) 322-8451

bibliography and the inclusion of at least a few problems after each chapter.

* * *

The reviewer, an assistant professor at Sonoma State College in California, specializes in quantum statistical mechanics and mathematical physics.

Classical numerical analysis

ANALYSIS OF NUMERICAL METH-ODS. By Eugene Isaacson, Herbert B. Keller. 541 pp. Wiley, New York, 1966. \$11.95

by George H. Weiss

Techniques of numerical analysis are finding their way into the solution of increasing numbers of problems of theoretical and applied physics from the solution of partial differential equations of hydrodynamics and superconductivity to the application of Padé approximant methods in nuclear physics and many-body theory. A new exposition on numerical analysis is therefore of potential interest to physicists. The text under review is, however, addressed more to the mathematician than to the physicist. My comment is not meant in any disparaging sense, since the authors would not claim to be addressing an audience of physicists.

Nevertheless, omission of such topics as rational approximations, Padé approximants and data-smoothing techniques makes the book less useful than it might otherwise be in the context of physical application. The topics which have been included (and which might by now be referred to as "classical" numerical analysis) are discussed clearly and accurately from the mathematical point of view. The discussion of solutions of linear and nonlinear equations are particularly lucid. Other topics are discussed with commendable concern for roundoff and truncation errors. This book can be highly recommended as a readable introduction to a considerable part of numerical analysis. There are important gaps, however, for potential applicants of the theory.

The reviewer works in the division of computer research and technology at the National Institutes of Health.

24.95

Eigenvalue and scattering problems

VARIATIONAL PRINCIPLES. By B. L. Moiseiwitsch. 310 pp. Interscience, New York, 1966. \$14.00

by Joseph Gillis

The main purpose of this text is to demonstrate the application of variational methods to two types of quantum mechanical problems: steady-state problems where the variational techniques are used to obtain eigenvalues, and scattering problems where they are applied to the evaluation of scattering amplitudes and phase shifts.

The book opens with a careful and methodical formulation of the basic ideas of the subject and of their application to both classical and relativistic mechanics. The chapter on eigenvalue probelms includes the first textbook treatment so far available of recent work on two-electron atoms. And the chapter on scattering theory includes, of course, an account of the Schwinger variational principle as well as of some of the many other such principles that have come in its wake.

The subject is a difficult one and, in spite of the high quality of the exposition, the book is not easy reading. There are not many books that cover this sort of ground and the reviewer knows none that do it as well as this.

The reviewer is professor of applied mathematics and former dean of the graduate school at the Weizmann Institute of Science, Rehovoth, Israel.

Introduction to quanta

WAVE MECHANICS FOR CHEMISTS. By C. W. N. Cumper. 382 pp. Academic Press, New York, 1966. \$11.50

by Donald A. McQuarrie

This book is apparently meant as an introduction to quantum mechanics for students at the undergraduate level. Its use as a first introduction would be utterly disastrous, though, since it presents quantum mechanics as an esoteric, mysterious subject, bristling with difficult mathematics, from which the student must be spared. Such an introduction could lead to

Maximized Value...

Our Reason For Being.

In accordance AEC TID-20893

For Instance:

- Model 700 6 decade Microcircuit scaler, 10 MHz, discriminator.....\$575.00
- Model 750 5 decade Microcircuit timer...\$550.00

There are others.

More Information..?

CALL COLLECT

MECH-TRONICS NUCLEAR CORP. 1723 North 25th Avenue Melrose Park, Illinois 60160