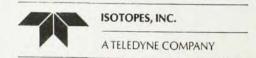
We won't sell you an unused Ge diode


Every germanium diode we make is put through its paces in our own research lab before we ship it. This procedure gives you the most detailed information on the true efficiency and resolution of the diode from actual measurements — not just from theory based on area and depth.

From our own research work, we know how important it is to determine every diode parameter. This means efficiency, resolution, response time and active volume. This is why we completely evaluate each diode before we sell it — probably more completely than in your own lab. We make extensive tests using Am-241, Cs-137 and Co-60 standards to check each diode.

With every diode shipped you receive a detailed Test Data Certificate which reports all of the information obtained from our measurements.

For complete details on our germanium diodes—their resolution, response, size, price and efficiency, write Isotopes, Inc., 50 Van Buren Place, Westwood, New Jersey 07675, or call Roland Kologriyov at

Structure from reactions

STUDIES OF NUCLEAR REACTIONS.
Vol. 33, Proc. (Trudy) P. N. Lebedev
Physics Institute. D. V. Skobeltsyn,
ed. Trans. from Russian by S.
Chomet. 222 pp. Consultants
Bureau, New York, 1966. Paper
\$22.50

by Henry S. Valk

Increasing interest has been displayed lately in the study of the structure of light nuclei as revealed through nuclear reactions. Many of these investigations have centered on excited states in the lightest nuclei, such as the alpha particle.

It is most timely, therefore, that we now have available a translation of Studies of Nuclear Reactions, volume 33 in the continuing series of the proceedings of the P. N. Lebedev Institute. This volume contains a series of nine experimental and theoretical papers in nuclear reactions.

For the most part, the articles are sufficiently detailed that they can be read with profit by physicists in other fields and by graduate students. This readability is particularly true of the first three papers which concern recent experimental results on the interaction of three-nucleon systems with protons and deuterons. For example, this reviewer found the dissertation "Interactions of Protons with Tritium at Energies Below the (p,n) Reaction Threshold" by A. B. Kurepin a most valuable summary of the work in this area prior to 1965.

The usefulness of the current volume makes one look forward to the release of others in this series.

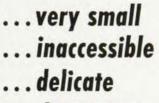
The reviewer, chairman of the physics department at the University of Nebraska, is interested in high-energy and theoretical physics.

Controversial deformation theory

PARTICLE WAVES AND DEFORMA-TION IN CRYSTALLINE SOLIDS. By Edwin R. Fitzgerald. 249 pp. Interscience, New York, 1966. \$11.95

by Walter G. Mayer

Some of the unique ideas concerning particle waves in solids discussed in this book have already been published by the author in various scientific journals. For a number of years the approach taken by Fitzgerald has been criticized, for experimental and theoretical reasons, and it is thus to be expected that the present book will again create a controversy.


The basic aim of the book is the calculation of macroscopic quantities associated with the deformation of crystalline solids. Wave mechanics is to be used for this purpose and since inpractice rather than in-principle results are to be found for the explanation of nonelastic resonances, mean elastic sound velocities, characteristic stresses and other mechanical quantities, the author proceeds to change a few time-honored aspects of wave mechanics. It is debatable, however, whether some of the experimental results reported by the author should actually be explained in terms of wave mechanics, orthodox or modi-Furthermore, the validity of some of the experimental results to be explained here (by the modified wave mechanics approach) has been questioned long before the book was published. Doubts were voiced with so much compassion that a hastily arranged experimental demonstration was given by the author one day, at high noon, during the 1960 Providence meeting of the Acoustical Society. Despite the demonstration there are still researchers who are looking

for the Fitzgerald effect. To be sure, the book also discusses phenomena other than the controversial Fitzgerald effect. The author selects to explain them too, by applying his theory of particle waves. Nevertheless the fact remains that one may also explain some of the macroscopic phenomena by other theories. matter how difficult it will be for the individual reader to accept Fitzgerald's unique approach he will accept at least the very first sentence of the preface which says, "The idea that there is a close connection between particle waves and the macroscopic deformation of solids will be surprising to many and distasteful to some."

The reviewer teaches physical acoustics and solid-state physics at Georgetown University, Washington, D.C.

TAKE TEMPERATURE WITH A MICROSCOPE?

With this new IR Microscope you can now take the temperature of targets that are...

... dangerous

Is it too small to handle? Too delicate to disturb? Too dangerous to touch? The Barnes Infrared Microscope will take its temperature . . . from any angle. Without touching it. Without altering the state of the target being measured.

A crab's eye or a rapidly stitching sewing needle, a memory core or a spinning motor shaft in a bell jar, this IR Microscope measures temperature where all conventional devices fail.

With its small spot size—lens options to .0007-inch—and its long working distance—up to 13 feet—you can make temperature measurements of small targets through tiny view ports, down narrow shafts, in evacuated or contaminated areas. And the IR Microscope's wide-angle optics permit you to view the target all the while.

Typical size of the Infrared Microscope's collecting beam is %-inch. Speed of response: 10 milliseconds. Temperature resolution: 0.5°C at room ambient; better at higher temperatures. Standard range: 0°C to 165°C (extended range to 2500°C available). Mount: tripod or stand.

For a free bulletin describing this Microscope, write to Product Sales Manager: Barnes Engineering Co., Stamford, Conn. 06902

> Barnes Engineering Company

> > ... Where Infrared Is Our Business!