have any value. It was a very happy coincidence that these two developments occurred almost simultaneously, paving the way toward this new application of the electron microscope.

In judging the present book, comparison with the previously reported one is unavoidable. I praised the book written by Hirsch and his collaborators very much, and now after looking at the book by Saada, I am even more inclined to praise the first book. Whereas the book by Hirsch et al was written by people actively engaged in the development of the field, Saada writes more from the sidelines. As far as I know, he is a specialist on lattice defects and thus he discusses the various types of lattice imperfections a little more systematically, from the point of view of dislocation theory, than does the book by Hirsch et al. On the other hand, Saada has not, to my knowledge, contributed much original work to the subject of the present book. This in itself may not be a disadvantage. I have seen excellent reviews written by people who have started out fresh into a new field and were obliged to collect material for their own benefit. The present book, however, may be of less benefit to the electron microscopist wishing to interpret his pictures, than the book by Hirsch because it is written from a considerably more formalistic point of view. The author seems to be more interested in the mathematical development of the dynamical theory than its precise application to the interpretation of electron micrographs. The book is profusely illustrated with electron micrographs, which are there for the purpose of illustrating the theoretical points. I am afraid the correlation sometimes is not very clearly established, and the practical electron microscopist may be lost between the

mathematical development and its application to the image he is observing. This remark does not apply to the "metal physics" part, which is quite good.

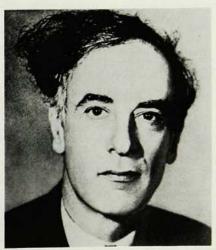
A cursory look at the references shows that the bibliography was not prepared very carefully. As an example, one particular book is referenced with both the year and the publisher being wrong.

Summarizing, I may say that while this is a good guide book for identifying unknown details, it suffers from comparison with an even better book. If it hadn't been for the appearance of the book by Hirsch and his friends, this would have been most welcome. As it is, it is a good second choice.

* * *

L. Marton is chief of international relations for the National Bureau of Standards.

Landaus' work, with commentary


MEN OF PHYSICS: L. D. LANDAU. Vol. 1, Low Temperature and Solid-State Physics. By D. ter Haar. 196 pp. Pergamon Press, Oxford, 1966. Paper \$2.95

by R. B. Lindsay

It has been pointed out with some justice that students of physics, both undergraduate and graduate, tend to concentrate their attention on the standard textbooks and rarely look with enough care at the current periodical literature until they get well their professional research. There are, of course, good reasons for this, the principal one being that the research articles in the journals are not written primarily for students but for other experts in the field and are therefore in general very difficult to read with real understanding. It is with the view to remedying this situation that Pergamon Press has inaugurated a series of "Selected Readings in Physics," which present in a variety of fields reprints of key papers, together with editorial comment to render their reading more meaningful to the student. Moreover the aim has been to keep the price low enough to make their purchase feasible by the average student.

The present volume is illustrative of

the purpose of the series. In it the editor Dirk ter Haar has gathered eight important papers by Lev D. Landau on the theory of liquid helium, superconductivity and solid-state physics. This collection is prefaced by 50 pages of explanatory material reviewing the essential points in the papers and providing an excellent introduction for the understanding of Landau's work. A second volume is promised with twelve more papers on such fields as phase transitions, stellar energy, cosmic rays, indeterminacy in

LANDAU

quantum mechanics, plasma physics and quantum field theory.

The scope of Landau's original contributions to theoretical physics, as exhibited in this volume, has been amazingly wide. Whatever he has touched he has illuminated with profound imaginative power. His writing also is very lucid. Nevertheless the student will find ter Haar's commentary very helpful in providing the necessary appreciation for the finer points. The discussion of liquid helium is supplemented by a brief account of Fermi liquids in general. The solidstate papers in the volume refer entirely to magnetism, including both diamagnetism and ferromagnetism. The book contains a complete bibliography of Landau's books and articles, as well as a brief list of relevant references to other authors. There is a frontispiece portrait of Landau. It is regrettable that the very brief biographical sketch could not have been expanded.

The editor and publisher are to be congratulated on the appearance of this useful volume.

R. B. Lindsay, who is Hazard Professor of Physics at Brown University, writes frequently on the history and philosophy of physics.