LT 10: Low-Temperature Conference in Moscow

Superconductivity, properties of helium, electronic properties of metals and antiferromagnetism were the subject matter for the Tenth International Conference on Low Temperature Physics held last August and September in Moscow. The large number of contributed papers, 445, made four simultaneous sessions necessary.

Ceremonial sessions included two addresses by Peter Kapitza, one to welcome delegates and one to summarize the conference, and presentation of the Fritz London award to C. J. Gorter (PHYSICS TODAY, Jan., page 76).

Vortex motion. In a paper on macroscopic quantum effects and vortices, John Bardeen (Illinois) discussed the theory of dc, or "flux-flow," resistance of type II superconductors that he has worked out with Michael I. Stephen According to this theory, mixed-state resistance comes from motion of quantized fluxoids induced to move by the Lorentz forces of transport currents. Fluxoid motion produces an electric field that drives the currents through vortex cores. Dissipation is presumed to occur in the normal-like core. Young B. Kim (Bell Labs) discussed the experimental situation. The theory agrees qualitatively with experiment but does not account for the observed Hall angles. It also appears to fail in very-high-critical-field superconductors where Pauli paramagnetism is important in limiting the upper critical field.

Further evidence that dissipation results from vortex motion came from F. A. Otter Jr and P. R. Solomon (United Aircraft), who reported their observation of thermomagnetic effects in the mixed state. They have measured temperature gradients induced by vortex motion and potential differences induced by temperature gradients while the superconductor is in the flux-flow regime. They conclude that temperature gradients can also act as driving forces on vortices and that the resulting vortex motion is accompanied by entropy transport.

I. Giaver discussed an experiment in which a voltage drop across a typeII superconducting "primary" induced a voltage in a nearby superconducting "secondary." The result can be explained by assuming that vortices moving in the primary produce flux motion in the nearby secondary. Solomon reported on a similar experiment in which a type-I superconductor in the intermediate state was used as the primary. It appears that the intermediate state is also characterized by a vortex-like structure, at least over a certain range of magnetic fields.

Despite recent progress, a general understanding of transport processes in the mixed state is still lacking. The main gap is absence of any simple theory of time-varying phenomena. The difficulties involved were brought to light by E. Abrahams (Rutgers) and T. Tsuneto (Osaka) and by M. P. Kemoklidze and L. P. Pitaevski (Institute for Physical Problems, Moscow); time-dependent generalizations of the Ginzburg-Landau equations were derived under the assumption of a sufficiently slow space and time variation of the order parameter. These equations appear hopelessly complicated; moreover, it is not clear that the assumptions correspond to the physical situation for moving vortices.

On the other hand, the thermodynamic properties are well understood, and the theory based essentially on the Ginzburg-Landau equations and Abrikosov's vortex solution is in good shape. According to recent theory the vortex structure should be triangular.

This fact has been beautifully confirmed by W. Fite II (Columbia) and Alfred G. Redfield (IBM Watson Labs). They studied nuclear resonance in the mixed state of vanadium, and demonstrated convincingly that the observed line shape implies a triangular lattice.

One of the remaining mysteries unexplained by BCS theory is the "precursor" absorption of electromagnetic radiation below the energy gap in superconducting lead. In measurements of far-infrared transmission and reflection of dirty lead films Michael Tinkham (Harvard) finds a clean onset of absorption at the superconducting energy gap with no apparent precursor edge.

One-d superconductors. A most interesting controversy concerned onedimensional superconductivity. controversy centered about the speculations made several years ago by W. A. Little (Stanford) regarding roomtemperature superconductivity in very long organic molecules. Richard A. Ferrell (Maryland) reviewed his objections to this idea. He pointed out that collective fluctuations in electron density are so large in one-dimensional systems that they prevent superconductivity. Little, on the other hand, suggested that although superconductivity in the strict sense may be impossible, a state with an unobservably small resistance could be formed. The picture was further complicated by L. P. Gorkov who, with Yu. A. Bychkov and I. E. Dzyaloshinski (Institute of Theoretical Physics), found a new kind of superconducting state. In this state, which can exist in one dimension, correlations between four particles-two electrons and two holes-are important. Gorkov contends that this state is immune to the criticism offered by Ferrell. On the other hand, recent work by P. C. Hohenberg (Bell Labs) supports Ferrell's position. It appears that the last word on this subject is yet to be said, but no experimental tests are imminent.

A breakthrough has been made in understanding correlations between superconductivity and ferromagnetism in the periodic table. It is well known

SINGLE CRYSTALS OF HIGH PURITY METALS

For Laser Applications, Gamma Ray Spectrometry Plates and Bending Blocks, Neutron Spectrometry Plates and Accessories, Thin Film and Acoustic Studies, Solid State Research.

Semi-Elements offers the largest variety of single crystals of high purity metals commercially available from any source. These single crystals are of extremely high purity, and are available in many as grown sizes and shapes.

- Titanium
 Indium
- Vanadium Tin
- Cobalt
- · Gold
- Iron
- Platinum
- Copper
- Thallium
- · Zirconium · Bismuth
- Silver
- Antimony
- Metal Single Crystal Alloys

Metal single crystals can be grown, cut, oriented and polished to your specifications. We will be pleased to quote to your specific requirements.

Write or call for literature.

that exchange interactions in metals enhance the static spin susceptibility. Norman F. Berk and J. Robert Schrieffer (Pennsylvania) described an additional repulsion between electrons having opposite spin that is due to critical spin fluctuations. This repulsion tends to suppress superconductivity, and accounts, at least qualitatively, for the empirical rules found by Bernd T. Matthias concerning superconductivity and ferromagnetism. It was also shown that these fluctuations could account for the large specific-heat-effective mass of palladium.

Another aspect of this problem was discussed by S. Doniach and M. J. Rice, who find that the same interactions are responsible for an anomalous electronic specific heat having the form $T^3 \log T$. They suggest that such an effect may be responsible for the low-temperature anomaly observed in the specific heat of He³.

Tunneling. Barry N. Taylor, W. H. Parker and Donald N. Langenberg (Pennsylvania) described their recent measurement of the Josephson radiation frequency $\nu=2eV/h$. By measuring ν and fixing the voltage V very accurately, they were able to determine the fundamental constant e/h with an improved accuracy of six parts per million.

Another interesting paper on tunneling was that of W. J. Tomasch who has observed size-dependent resonances in the second derivative of the voltage-current characteristic of Al-AlO_x-Sn tunnel junctions. These resonances are thought to result from a perturbation in the order parameter at the free surface of tin that couples the reflected quasi-particles and holes and modifies the state density at the junction. Since resonance spacing depends on Fermi velocity, the technique may be useful in measurement of this important quantity.

Sound in helium. Some of the most interesting sounds at LT 10 were in the session on helium, where the first observation of zero sound in He³ and second sound in solid He⁴ were reported.

Zero sound is a collective mode of a neutral fermion system somewhat

analogous to the well known plasma mode of a charged fermion system. Landau predicted it in 1957 in his now classic work on Fermi liquids, but until recently it has eluded direct observation. W. R. Abel, Ansel C. Anderson and John C. Wheatley (Illinois) have measured sound velocity and attenuation and find a maximum in the attenuation of a 15.4-MHz sound wave at about 0.01°K, accompanied by a 3% change in velocity. These results are characteristic of the transition from zero sound to first sound, and appear to agree qualitatively with the Abrikosov-Khalatnikov

H. A. Fairbank (Duke) and his group reviewed their recent observation of second sound in solid He⁴. A temperature pulse was propagated through a very carefully grown single crystal. At high temperatures the received pulse exhibited dispersion and its arrival time was temperature dependent as expected for heat propagation by diffusion. Below 0.7°K, however, they observed a dispersion-free pulse with a temperature-independent velocity approximately equal to that expected theoretically.

A new theory of absorption and dispersion of first and second sound in superfluid helium was the subject of an invited paper delivered by I. M. Experimental corrobo-Khalatnikov. ration of predictions of first sound was reported by W. M. Whitney (Cal Tech), C. E. Chase (MIT) and a group from Argonne; in general, it appears that experiment and theory on first sound are in satisfactory agreement. As yet, the theoretical prediction that the high-frequency secondsound velocity should approach zero at very low temperatures has not been experimentally confirmed.

Third and fourth sound are excitations of He II in which the normal fluid is effectively clamped and only the superfluid oscillates. Rounding off the Moscow sessions on sound propagation was an invited paper on third sound by Kenneth R. Atkins (Pennsylvania) and several contributed papers from the Kharkov group on fourth sound.

Helium mixtures. Recently it was observed that solutions containing less than 6 mole percent He³ in He⁴ are stable, apparently even at zero de-

PHYSICISTS

ADVANCE TO GENERAL DYNAMICS

SOLID STATE PHYSICIST

Solid State Physicist or Physical Chemist to take responsible position in an active research group with well established, modern laboratory facilities. Position calls for a PhD with technical leadership qualities. Applicant should have recognized scientific achievements to his credit in at least one of the areas pertaining to thin film physics, electro-optical detector physics, the electro physical behavior of solids or another related field.

Both basic and applied research is being pursued in our laboratories. Emphasis is presently on experimental research supported by good theoretical analysis.

PHYSICAL MEASUREMENTS

Requires physicist with strong background and interest in modern methods of physical

To arrange confidential interview, please send resume to Mr. L. F. Cecchi, Manager measurements. Emphasis is on the basic property of solids including electrophysical, electro-optical, nuclear and electron spin resonance and similar characteristics. Excellent research facilities are available. Position calls for design and performance of sophisticated experiments as well as the professional analysis of results as an integral part of basic, solid-state research objectives. Advanced degree (PhD or equivalent) required. Recent graduates will be considered.

PHYSICAL ORGANIC CHEMIST

Wanted for basic studies on the physical and chemical properties of organic materials. Some experience in synthetic organic chemistry desired. Organic Chemist with solid experience in physical chemistry acceptable. Position calls for an advanced degree. Recent graduates will be considered.

DETECTOR RESEARCH

Solid State Physicist with strong background in electro-optical detector research. Must be experienced in preparation and analysis techniques as well as in detector theory. Research objectives span entire spectrum from UV to Millimeter band. Complete, modern laboratory facilities available. Advanced degree required. Recent graduates, with directly applicable thesis work will be considered.

JUNIOR PHYSICISTS AND RESEARCH TECHNICIANS

Needed for experimental assistance in the area of vacuum deposition and sputtering, electronics, optics, and spectroscopy.

GENERAL DYNAMICS POMONA DIVISION

Engineering Personnel, General Dynamics, Pomona Division, Pomona, California. An Equal Opportunity Employer; U.S. Citizenship Required; Appropriate degree required, if applicable.

PHYSICISTS-SCIENTISTS

KEY PERSONNEL is a National organization devoted exclusively to the selective search for competent careerists among the technical disciplines.

Working closely with clients Coast to Coast, it is our policy to provide a professional service to scientists and engineers, that is ethical, knowledgeable and confidential. Our service is designed to provide YOU with a convenient focal point from which to explore, easily and efficiently, the numerous career opportunities existing anywhere in the U.S.

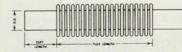
Our service to you—the individual scientist or engineer—is WITHOUT COST since our search fees are assumed by our organizational clients, who are Industrial, Defense and nonprofit organizations engaged in the advancement of the state-of-the-art.

We are currently searching to fill a broad spectrum of positions from semijunior to General Manager across the entire continent.

If you would like to explore for yourself, our unique approach, write for our confidential summary form or forward a copy of your current résumé as soon as possible:

John F. Wallace
Executive Vice President

KEY PERSONNEL CORP.


218 Tower Bldg.

Baltimore, Md. 21202

Part Number	O.D. (inches)	Flex Length (inches)	Price Each	Price 6-Pak	
FX-501	1/2	1	6.75	37.50	
FX-503	1/2	3	8.75	49.50	
FX-506	1/2	6	12.00	69.00	
FX-751	3/4	1	7.50	42.00	
FX-753	3/4	3	9.75	55.50	
FX-756	3/4	6	13.25	76.50	
FX-101	1	1	8.00	45.00	
FX-103	1	3	10.50	60.00	
FX-106	1	6	14.75	85.50	

All sizes have 1" cuff lengths

STAINLESS STEEL TUBING WITH RUBBER-HOSE FLEXIBILITY

This seamless tubing replaces rubber, glass and plastic tubing in high vacuum, chemical, cryogenic & other critical laboratory applications where only the cleanliness, strength, absolute leak tightness & durability of stainless steel can be trusted. Sizes listed are now in stock & available for immediate delivery. Contact factory for specials.

MASON-RENSHAW Industries

BOX 445, CARPINTERIA, CALIFORNIA 93013, PHONE (805) 684-2413

Low-light-level specialists use our Thermoelectric and Dry-Ice PM Tube Coolerators.

Completely interchangeable tube sockets permit end window tube type and custom dynode networks to be used with any PFR cooling chamber. In astronomy, spectrophotometry, scintillation counting and biology applications, these versatile chambers permit maximum dark current reduction for optimum

Continuous cooling and automatic temperature stabilizer circuitry (TE-102TS) allow remote station operation. The water cooled TE-104 is ideal for laboratory use and a dry-ice unit (TE-200) loads from top to eliminate need for disassembly when adding coolant. Continuous operation plus gain stability and dew-free, frost-free operation is available in the series shown above.

Whatever your requirements for PM tube cooling, Products for Research offers a welldesigned, readily available solution. Design specifications, performance data and prices sent on request.

*We call them customers

Products for Research, Inc.

57 North Putnam Street Danvers, Massachusetts (617) 774-3250

- PHOTOELECTRONICS
- ELECTRON & ION PHYSICS
- SPACE INSTRUMENTATION

PHYSICISTS PHYSICAL CHEMISTS **ELECTRON TUBE SPECIALISTS**

for expansion of a laboratory concerned with the development of new techniques and research

leading to new devices.

The nature of the problems solved by this laboratory varies widely, so that the principal qualifications required are an inquiring intelligence and a sound background in physics, electrical engineering or physical chemistry. Positions are available both for recent graduates at all according levels and experienced propher at all academic levels, and experienced people capable of accepting primary responsibility for specific programs. Present programs include activities in the following areas:

- OPTICS
- PHOTOELECTRON EMISSION
- PHOTOMULTIPLIERS
- SIGNAL GENERATING IMAGE TUBES
- SURFACE PHYSICS
- FIBER OPTICS TECHNOLOGY
- MASS SPECTROMETRY

The work is stimulating and satisfying and located in comfortable and pleasant surroundings in suburban Detroit.

Excellent opportunities for academic advancement.

> Write or wire A. Capsalis Research Laboratories Division The Bendix Corporation Southfield, Michigan

Research Laboratories Division

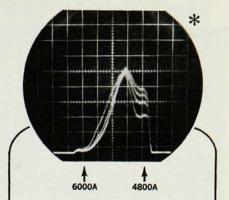
An equal opportunity employer

grees. This implies that the attractive potential between He3 atoms in solution is greater than that between He3 atoms in pure liquid. In an invited paper, David Pines (Illinois) and Wheatley discussed how experimental data can be used to predict magnitude and momentum dependence of the additional attraction. It turns out that the attraction is very weak so that such solutions exhibit properties that are easily predictable theoretically for a weakly interacting Fermi fluid. The effective attraction could lead to a superconducting state having a transition temperature of about 2 microdegrees, a prediction that appears to be safely insulated from experimental onslaught, at least for the time being.

In addition to their intrinsic interest, He³-He⁴ mixtures are used to attain ultra-low temperatures. The He³-He⁴ mixture refrigerator uses the cooling effect of continuous dissolution of He³ in He⁴. One of the more successful of these refrigerators has been constructed at the Joint Institute for Nuclear Research at Dubna where temperatures as low as 0.025°K have been attained. Some of the relevant theory was described by V. P. Peshkov.

A method of cooling that we hope will yield temperatures below the millidegree range is adiabatic demagnetization of nuclei, described by John M. Goodkind and E. B. Osgood (U. of California, La Jolla). So far they have been able to go as low as 3 millidegrees.

Rotation. One of the more exciting helium sessions was on rotating helium. Keynote speaker was E. L. Andronikashvili who reviewed work carried out over the past few years at Tbilisi. The most important conclusion was that the rotating superfluid undergoes a first-order transition to the normal state. This result is quite surprising since it is thought that rotating He II is analogous to a type-II superconductor in a magnetic field, in which case the transition to the normal state is second order. The main evidence presented by Andronikashvili was observation of a 9% discontinuity in liquid density across the transition point. In addition, he observed interesting hysteretic effects typical of a first-order transition.

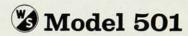

Several new results were reported during a session on critical phenomena. Leo P. Kadanoff (Illinois) spoke about a new theory of phase transitions that enables him to predict relations between the functional forms of singularities in various thermodynamic properties near a critical point. By studying the temperature dependence of the angular momentum of a persistent current, John Reppy and J. R. Clow (Yale) conclude that the superfluid density ρ_s varies as $(T_{\lambda} - T)^{2/3}$, in agreement with Kadanoff's prediction from the logarithmic specific-heat singularity.

M. I. Barmatz and Isadore Rudnick (UCLA) reported on their measurements of sound velocity near the lambda transition. They find the velocity continuous across the transition, in contradiction to earlier measurements.

Another interesting critical-point paper given by Peshkov and A. P. Borovikov dealt with an experimental study of the interface between He I and He II established by a heat current that enables them to determine the λ point with four-place accuracy.

Critical velocities. Liquid-helium flow in both wide and narrow channels is a subject of considerable interest. It is now well established that not one but several critical velocities exist in He II. Their existence is related to different dissipative processes that can become operative. In an invited paper E. F. Hammel (Los Alamos) discussed these processes and showed how they can be separately identified from experimental flow measurements. He pointed out four independent dissipative mechanisms: viscous dissipation by the normal fluid, mutual friction between normal fluid and superfluid, dissipation due to turbulent normal flow and dissipation due solely to superfluid flow in narrow channels or films. Associated with these are four independent critical velocities so that measured values of ve must depend on which mechanism is operative.

An experiment that elucidates some of the difficulties in identifying these critical velocities was discussed by W. M. van Alphen, J. F. Olijhoek, R. de Bruyn Ouboter and K. W. Taconis



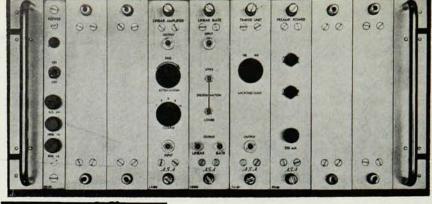
FLASH PHOTOLYSIS

PROPELLANT COMBUSTION

ABLATION STUDIES

These are a few of the many applications for the

Rapid Scanning Spectrometer


Scans 30A/usec.
with Excellent
Stability &
Resolution; Covers
Broad Wavelength
Region in One Scan.

*Four successive absorption spectra, of carbon tetrachloride sensitized crystal violet dye after flashing.

Write for Bulletin 10866 or Call (212) 461-4200

THE WARNER & SWASEY CO.
CONTROL INSTRUMENT DIVISION
32-16 Downing Street • Flushing, New York 11354

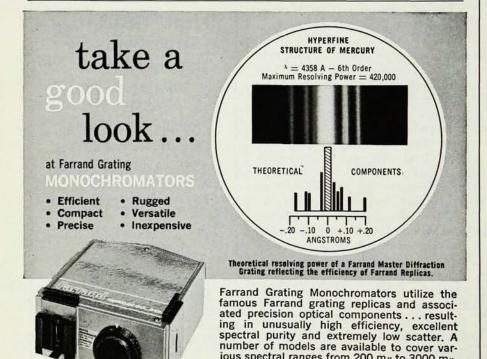
MÖSSBAUER SPECTROSCOPISTS

Would you like to have another spectrometer, or 2, or 3, or 4 -?

UPDATE your present spectrometer with this fast data accumulation system. Speedy, that's the word for it. Take 57Fe data at 60-90 kHz.

Pulse height spectrum at left shows 6 and 14 key lines: upper curve is taken in coincidence with output of linear gate. Notice the clean pulse height selection of the 14 key line at an 85.7 kHz rate.

Current "state of the art" modules fade at the 10-15 kHz rate. Your spectrometer can do the work of 5 upon addition of this system, plus a hot source of 50-100 mCi.


For the best in Mössbauer instrumentation, depend on:

Austin Science Associates, Inc.

P. O. BOX 7728

AUSTIN, TEXAS 78712

PHONE GR 2-4509

projection and spectral measurements. Write for descriptive literature

> OPTICAL 535-PT So. 5th Avenue CO., INC. Mount Vernon, New York 10550 914-668-9393 / Cable Address: FOCIUS NY

ious spectral ranges from 200 m μ to 3000 m μ .

These Monochromators are ideally suited for a wide range of uses including such applications

as microscope illumination, monochromatic

The Pioneers in Fluorometry

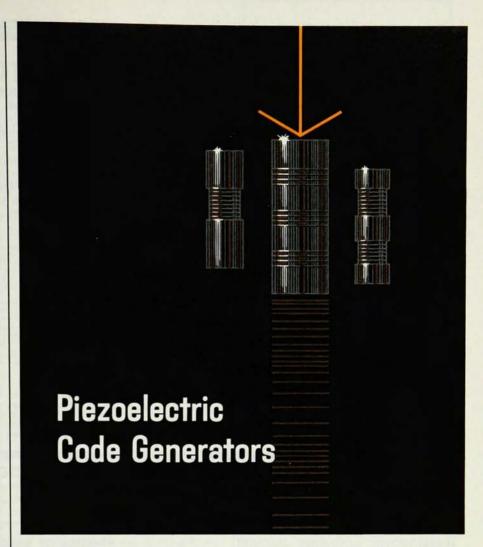
(Kamerlingh Onnes Laboratorium). They find that the superfluid critical velocity varies as $d^{-1/4}$ over eight decades, even for channels larger than 10-3 centimeters. It had previously been observed that the critical velocity was proportional to d-1 in wide channels, but the authors suggest that the earlier measurements reflect onset of normal turbulent flow rather than superfluid dissipation. Origin of this rather strange thickness dependence is not yet understood.

He II flow in very small geometries is exemplified by superfluid transfer through the film $(d \bowtie 3 \times 10^{-6})$ cm). Although many measurements of film-transfer rates have been made in the past, these display a notable lack of reproducibility. W. E. Keller (Los Alamos) and Hammel described a simple method for investigating how superfluid dissipation in the flowing film is distributed along the flow path. Their results demonstrate that under varying conditions the dissipation can be either highly localized or spread out over the path and that changes in this distribution are responsible for variations in the observed transport

Metals. In addition to the usual dose of papers on "Fermiology," the session on metals offered several sections on more fundamental matters.

It appears that the de Haas-van Alphen effect, useful in study of Fermi surfaces, will also be helpful in studying a certain class of interactions among electrons in metals. It has been known for several years that the magnetic field "seen" by an electron in a metal is, to a first approximation, induction B rather than H. This difference can lead to drastic modifications of the line shape of the de Haas-van Alphen oscillations. These modifications were first seen in the noble metals, but the phenomenon now seems to be quite general. In an invited paper, David Shoenberg (Cambridge) discussed his analysis of work done on gold and silver, in which magnetic interactions are quite important.

J. H. Condon (Bell Labs) pointed out that magnetic domains are expected to exist whenever differential magnetic susceptibility is greater than $\pi/4$. He has performed a calculation of domain size by including surface-energy and field-energy contributions to the free energy. The experiments of George M. Seidel and W. Broshar (Brown) on silver and beryllium agree qualitatively with Condon's prediction, but a direct observation of the domain structure has not yet proved possible.


Edward F. Greene, A. Houghton and J. J. Quinn (Brown) have studied the response to a small spatially varying field of an electron gas in a uniform magnetic field within the framework of the random-phase approximation. For large fields the susceptibility diverges for some wave vector and this fact suggests that the system can spontaneously support a spatially varying magnetization.

When a metal with very small band gaps is placed in a large magnetic field, electrons can tunnel from the Fermi surface in one band to the Fermi surface in another. This is known as magnetic breakdown and was the subject of two invited papers. W. G. Chambers showed how the usual effective-Hamiltonian theory for Bloch electrons must be modified. Leopolde M. Falicov (Chicago) discussed the theory of the galvanomagnetic properties of magnesium and zinc, which both display strong breakdown effects, the most pronounced being the saturation of the high-field magnetoresistance.

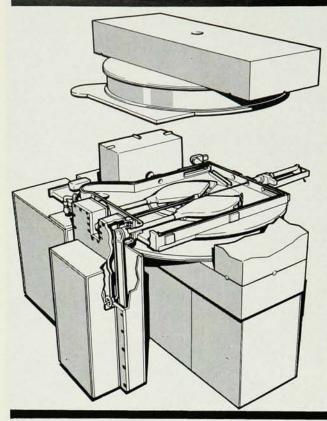
Observations of geometric resonances in magnetoacoustic attenuation were the subject of an invited paper by John B. Ketterson (Argonne). This work has brought to light fine points in the already analyzed Fermi surface of magnesium.

The Fermi surface of arsenic has recently been under intensive study and the de Haas-van Alphen work was the subject of an invited paper by M. G. Priestley (Chicago), and A. D. C. Grassie, P. R. Baker and Langenberg discussed the Shubnikov-de Haas cyclotron-resonance measurements. There appears to be good agreement with the pseudopotential calculation of Falicov and P. J. Lin.

Cyclotron-resonance experiments have usually been done with either the Azbel-Kaner or Galt geometries in

Piezoelectric research continues at Sandia. Our scientists now report a device technique for very compact but powerful pulse and code generators which can emit both sonar and radar signals simultaneously.

Typical experimental devices contain arrays of thin piezoelectric discs separated by acoustic delay lines. When a suitable acoustic or electrical input is applied, the discs respond by generating acoustic and electrical wave trains; these may be programmed to contain information. The devices can be used wherever pulse generators are now used, and they have obvious advantages.


Sandia is diversity in depth, a challenging environment for technical people who excel. Our current needs are especially for persons with records of achievement in Physical Chemistry, Thermodynamics, and Mathematics. For information write: Employment Organization 3151, Sandia Laboratory, Box 5800, Albuquerque, New Mexico, 87115. Sandia is an equal opportunity employer. U.S. citizenship is required.

SANDIA LABORATORIES

OPERATED FOR THE U.S. ATOMIC ENERGY COMMISSION BY SANDIA CORPORATION

30-INCH AVF CYCLOTRON

■ This new cyclotron produces intense external beams of protons, deuterons, and helium-3 ions, and, with suitable targets, fast and thermal neutrons. These particles can be used for activation analysis, isotope production, low energy nuclear structure research and physics teaching, and for radiation effects and shielding studies. The cyclotron can also be modified for negative ion acceleration and use as an injector to a Tandem Van de Graaff accelerator.

PERFORMANCE

Particle	Proton	Deuteron	Helium-3	Fast Neutron	Thermal Neutron
Energy	15 MeV	7.5 MeV	20 MeV		
Resolution	75 keV	38 keV	100 keV		
Current	50 μA	50 μΑ	50 μA	2 x 1012	5 x 10°

Beam Size at Exit Port, 0.5 inch diameter, .050 radian divergence

■ Compact size for minimum shielding requirements ■ Separable magnet for full access to accelerating region ■ Preset focusing sectors eliminate harmonic coils ■ Solid state, stabilized RF and magnet power supplies

■ Convenient frequency change for protons, deuterons, and helium-3 ■ Recirculating helium-3 recovery system.

For more information, please write or call: THE CYCLOTRON CORPORATION

NEW AND RECENT BOOKS IN PHYSICS

ELECTRONIC COUNTING CIRCUITS

J. B. Dance. Describes all the important methods of counting electrical pulses. Well proven practical circuits giving full component values illustrate each method.

June \$16.75

OPTICAL PROPERTIES OF METALS

A. V. Sokolov. Presents a detailed account of the extensive progress made by Russian physicists in the optical properties of metals. Translated from the Russian.

SPECTROSCOPIC GAS TEMPERATURE MEASUREMENT

Richard H. Tourin. Concise reference work on the use of spectroscopic techniques of pyrometry for non-experts.

\$10.75

NOBEL PRIZE LECTURES IN PHYSICS

(Covering 1901-1962 in 3 volumes)
The recent publication of Volume 1 (1901-1921) completes the set of collected Nobel Prize Lectures in Physics, 1901 through 1962, available in English for the first time.

Price for 3-volume set: \$85.00

THE EVOLUTION OF THE NUCLEAR ATOM

G. K. T. Conn and H. D. Turner. Historical survey of research into the atom and its nucleus, in the words of those who carried out the re-\$10.00

THE ELECTRONIC THEORY OF HIGHLY ALLOYED SEMICONDUCTORS

V. L. Bonch-Bruyevich. Contains all the available information on Russian progress in heavily doped semiconductors. Includes a detailed review of the many-electron approach to the theory of doped semireview of the many-election approach conductors. Translated from the Russian.

1966

KINETICS OF LASER RADIATION

V. S. Mashkevitch. Presents a unified laser theory based on the method of kinetic equations. Translated from the Russian.

June approx. \$12.50

LOW NOISE ELECTRONICS

W. P. Jolly. Undergraduate-level text provides a working knowledge of quantum and electron beam electronics. Ample references permit study at greater depth.

\$5.00 June

THE SCIENCE OF MOVEMENT

R. A. R. Tricker and B. J. K. Tricker. An account of the science of movement with its basis in physics and some of the more interesting and important of its wide range of applications. April

\$9.00

DYNAMIC MASS SPECTROMETERS

Erich W. Blauth. Presents the current importance of simple applica-tions of dynamic analysis systems and promotes the future use of the method.

\$13.75

THEORY OF GROUPS IN CLASSICAL AND QUANTUM PHYSICS

Vol. 1: Mathematical Structures and

the Foundations of Quantum Physics
T. Kahan in collaboration with P. Cavailles, R. Govarne, T. D. Newton, G. Rideav, G. Lochak, and R. Nataf. Complete and self-contained study of the theory of groups applied in theoretical physics and chemistry.

published

THE MAGNETIC PROPERTIES OF MATTER

D. E. G. Williams. Presents essential points of magnetism. Emphasizes that modern magnetic theory is developed from quantum theory, giving comparison of theory with experiment. \$11.75

AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 Vanderbilt Avenue, New York, N. Y. 10017 - Telephone (212) MU 6-5277

Be (d,n)B10 thick target, n/cm2/sec

¹¹With paraffin moderator, n/cm2/sec

Would you welcome providing scientific assistance to fleet and force commanders in the U.S. and overseas?

We have openings for qualified scientists at the Center for Naval Analyses of the Franklin Institute. For example, as a CNA Analyst, you may be assigned on rotation for about one year, serve afloat and ashore — conduct on-the-scene studies of urgent problems, assist in determining and improving Fleet capabilities by helping to plan and analyze Fleet operations.

IMMEDIATE OPENINGS FOR: Physical Scientists, Mathematicians and Statisticians, Systems Analysts, Operations Research Analysts, Research Engineers, Social Scientists. CNA offers an excellent salary and fringe benefits — plus an opportunity to serve your country as a scientist. If you're interested — and if you're a qualified scientist with a PhD or MA degree and could bring us scientific imagination and insight, we'd like to hear from you.

What we do at CNA — CNA investigates problems of future force requirements and allocations, the cost effectiveness of proposed Naval systems, the evaluation of new weapons and sensors, technical aspects of strategic planning, and the correlation of research and development programs with Navy and Marine Corps needs. Such investigations are made in all of the major warfare fields, including undersea, surface, air, anti-air, amphibious and space.

Send resume and letter to: James P. Hibarger CENTER FOR NAVAL ANALYSES 1401 Wilson Blvd. Arlington, Va. 22209

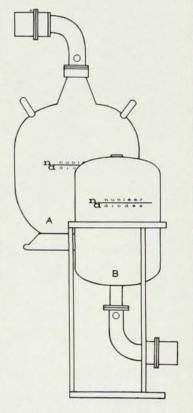
CENTER FOR MAYAL AMALYSES OF THE FRANKLIN INSTITUTE

INS - Institute of Naval Studies
SEG - Systems Evaluation Group
OEG - Operations Evaluation Group
NAVWAG - Naval Warfare Analysis Group
MCOAG - Marine Corps Operations Analysis
Group

An equal opportunity employer

MEETINGS

which the magnetic field is applied in one case parallel and in the other case perpendicular to the surface. The use of inclined magnetic fields is potentially useful, and was discussed by M. Y. Azbel, P. E. Bloomfield, E. A. Kaner and A. Ya. Blanc. For small inclinations from the surface, a splitting and broadening of the Azbel-Kaner resonance frequency due to a Doppler-like mechanism is predicted. This type of geometry can also be useful in magnetoacoustic work.


Antiferromagnetism. I. E. Dzyaloshinsky outlined his work on antiferromagnetic structures. He pointed out that four types of magnetic struc-"classical" structures ture can exist: in which the magnetic period is commensurate with the lattice period; "beats," which appear as a result of either spin-orbit interaction or a pronounced exchange-force anisotropy; structures possessing periods close to the inverse value of some extremal diameters of the Fermi surface, which arise from the long-range Ruderman-Kittel interaction; "accidental" structures with totally arbitrary periods.

The experimental evidence concerning localized moments in metals was summarized by Alan J. Heeger (Pennsylvania). In most cases the virtuallevel widths are small compared to the Coulomb and exchange energies responsible for localized moments. This suggests that the Hartree-Fock treatment of the problem is suspect and that correlations may play a dominant Heeger also emphasized the need for studying the single-impurity problem, which is very difficult experimentally because of the long-range Ruderman-Kittel interaction. He suggested that one could isolate the impurities by limiting the conductionelectron mean free path and hence reduce the range of the impurity-impurity interaction.

I would like to thank E. F. Hammel and B. Schwartz for their assistance in the preparation of this report.

Leonard W. Gruenberg MIT

Convertible
CRYOSTATS
for
Experiment
Flexibility

Convertible cryostats enable you to change your cooled detector system configuration. Why let the cryostat geometry limit your experiments? Now you can change cryostat configurations in your laboratory, from A to B or B to A. We will exchange components or you may purchase the additional parts necessary to convert from one configuration to another. Write for details on our complete line of cryostats, Ge(Li) detectors, cooled FET preamplifiers, surface barrier and position sensitive silicon detectors. Phone us at 312-634-3870.

nuclear diodesinc P. O. box 135 prairie view, illinois 60069