those physicists not already very familiar with group theory. Indeed, parts 2 through 7 cover many of the same topics as part 1, but in a much more leisurely fashion. For this reason a reading of the second "book" can serve in part as a preparation for the first.

The duplication of subject matter probably arises, in part at least, because different authors have written different sections. Part 1, entitled "Theory of Groups and Axiomatized Mathematics for the Use of Physicists," is by P. Cavaillès and Kahan. Part 2, on the inhomogeneous Lorentz group, is by T. D. Newton; part 3, by R. Gouarné, is on abstract groups; parts 4 and 5, by G. Rideau, are on group representations and the symmetric group; part 6, by Kahan, is on the axioms of quantum mechanics; and part 7, by R. Nataf, is on the rotation group. The ordering of these sections seems mysterious to me. Why, for example, should the rotation group be treated after the Lorentz group, when the former is simpler? Why should the section on the symmetric group be sandwiched between a section on group representations and another on quantum mechanics? Furthermore, the symmetric group is considered, not only in the part devoted to it, but in at least three other sections as well. If learning proceeds by repetition, the reader of this volume will learn about certain aspects of the symmetric group exceedingly well. The index refers to the treatments in parts 1 and 3, but inexplicably, not to those in parts 5 and 7.

I have some quarrel with the emphasis of certain sections. For example, in discussing the axiomatic foundations of quantum mechanics, Kahan makes the observation that "The difficulty of the new ideas is due largely to the unfamiliar character of these physical postulates." Surely, the basic physical ideas of quantum mechanics are by now well known to the theoretical physicists for whom the book is intended. The author's statement might have been timely if written in the late 1920's, but not today.

Although the work lacks unity as a whole, most of the individual parts contain considerable information about group theory that is of value to physicists. Especially useful, although too brief, is Newton's treat-

ment of the Lorentz group. The information contained in this volume is available elsewhere, but not always with the same emphasis or clarity, and not all collected in a single reference work. For these reasons, the book will be valuable in the library. But because of the shortcomings of the work, coupled with its extremely high price, it will probably not find its way to the individual bookshelves of many physicists.

D. B. Lichtenberg is professor of physics at Indiana University. He is a theoretician, specializing in elementary particles.

Physics in biology

PHYSICAL TECHNIQUES IN BIO-LOGICAL RESEARCH. (2nd ed.) Arthur W. Pollister, ed. Vol. 3, part A: Cells and Tissues. Academic Press, New York, 1966. \$13.50

by Joseph G. Hoffman

The revision of the first edition required two volumes of which part A covers the following major subjects: phase contrast and interference microscopy, birefringence and dichroism of cells, x-ray microscopy and absorption analysis, microtomy, manometric techniques for single cells, and electron microscopy of microörganisms.

Each of the six chapters is well documented and each brings its topic up to date, and in some instances indicates the general trend to be expected in the future. In the ten years since the first edition technical developments in all six fields have burgeoned greatly. This is apparent from a casual perusal of the pages because the contributors present excellent photographs exemplifying the several physical techniques found applicable in biologic experimentation. The text, although on an interdisciplinary subject, makes for reading that will appeal to physicists as well as biologists because of the remarkable gadgets described. unique device is the Cartesian diver method described by Holter and Zeuthen for detecting single-cell gas respiration at rates of picoliters per hour. Another, more sophisticated device, described by Barer, is the electronic interference microscope permitting measurements of optical path differen"This is a very good reference book and I heartily recommend it to beginning physics students who are rusty in math. It is beautifully gotten up, with excellent diagrams."—

> Prof. Robert Randall City College of New York

Mathematics for Introductory Science Courses

Calculus and Vectors

Daniel A. Greenberg

Columbia University

214 Pages

Paper: \$2.95/\$2.36 prepaid* Cloth: \$5.00/\$4.00 prepaid*

Designed to fill the mathematical requirements of first-year courses in the physical sciences, this paperback is an intuitive and pictorial approach to many of the key ideas of mathematics.

CONTENTS

Part I. Review of Elementary Mathematics.

- 1. Geometry.
- 2. Algebra.
- 3. Graphs and Analytic Geometry.
- 4. Trigonometry.

Part II. Calculus.

- 5. The Definite Integral.
- 6. The Derivative.
- The Fundamental Theorem of Calculus.
- Additional Techniques and Applications.

Part III. Vectors.

- 9. Elementary Vector Algebra.
- 10. Products of Vectors.
- 11. The Derivative of a Vector.

20% off on prepaid orders.

W. A. BENJAMIN, INC. ONE PARK AVENUE . NEW YORK 10016

new titles from

spectral theory and wave processes

VOLUME 1 OF TOPICS IN MATHEMATICAL PHYSICS

series edited by M. Sh. Birman

Department of Physics, Leningrad State University

Translated from Russian

The papers collected in the first volume of an important new series reporting the latest Soviet research in applied mathematics and mathematical physics are devoted to the spectral theory of operators, elastic waves in semi-infinite media, and the quantum theory of scattering. A rigorous solution of the Lamb problem, Stieltjes operators and the theory of operators in Hilbert space, seismic waves, and the Schroedinger operator in three dimensions are among the problems discussed.

114 PAGES

CB SPECIAL RESEARCH REPORT

\$15.00

quantum field theory and hydrodynamics

"TRUDY" VOLUME 29 OF THE LEBEDEV PHYSICS INSTITUTE SERIES

edited by Academician D. V. Skobel'tsyn, Director, P. N. Lebedev Physics Institute, Academy of Sciences of the USSR

Translated from Russian

Contains articles on the application of Green's function methods to quantum field theory and quantum statistics, on the hydrodynamical theory of multiple particle production, and on nonrelativistic hydrodynamics.

APPROX. 271 PAGES

CB SPECIAL RESEARCH REPORT

interaction of radiation with solids

PROCEEDINGS OF THE CAIRO SOLID STATE CON-FERENCE, AMERICAN UNIVERSITY IN CAIRO, HELD SEPTEMBER 3–8, 1966

edited by Adli Bishay, Chairman, Department of Physical Sciences, American University in Cairo, Cairo, U.A.R.

These papers, presented at the Cairo Solid State Conference by an internationally renowned group of scientists cover the interactions of electromagnetic and particle radiation of high or low energy with both crystalline and noncrystalline solids.

The studies in this volume will be an invaluable aid to current research in solid state physics.

701 PAGES

PP

APRII 1967

\$20.00

methods in the quantum theory of magnetism

by Sergei Vladimirovich Tyablikov, Chairman, Department of Statistical Mechanics, V. A. Steklov Mathematical Institute, Academy of Sciences of

Translated from Russian by Albin Tybulewicz, Editor, "Physics Abstracts" and "Current Papers in Physics". With a Foreword by Daniel C. Mattis, Belfer Graduate School, Yeshiva University, New York

This monograph deals with the quantum physics of magnetic phenomena, the second quantization method, the problem of spin Hamiltonians in the theory of strong magnetism, statistical mechanics, the approximate second quantization (spin wave) method, the molecular field method, elements of the perturbation theory at high temperatures, and the method of Green's quantum functions.

354 PAGES

JANUARY 1967

\$13.50

journal of optimization theory and applications

editor-in-chief: Angelo Miele, Professor of Astronautics, Department of Mechanical and Aerospace Engineering and Materials Science, Rice University, Houston, Texas

The scope of this journal covers mathematical optimization techniques and their applications to science and engineering. The theoretical areas presented are: direct methods, calculus of variations, dynamic programming, gradient methods, linear programming, game theory, inequality theory, boundary value problems, and numerical methods. The equality theory, boundary value problems, and numerical methods. areas of application are: aerospace engineering, civil engineering, mechanical engineering, chemical engineering, electrical engineering, economics, mathematical physics, and mathematical biology. This journal will certainly appeal to all mathematicians and engineers including scientists in many other fields. The interaction of mathematics and engineering presented in the JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS will result in a definite advantage to all readers.

VOLUME 1: 3 ISSUES (JULY, SEPTEMBER, AND NOVEMBER 1967) SUBSEQUENT VOLUMES: 6 ISSUES

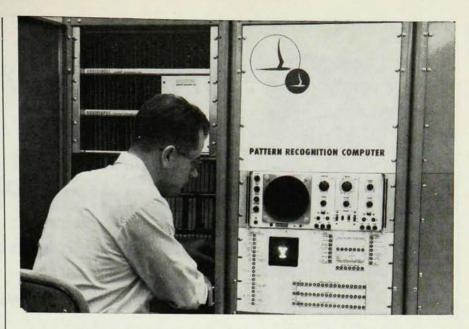
\$9.00 \$18.00

SAMPLE COPY AVAILABLE UPON REQUEST.

ces to one three thousandths of a wavelength of light.

There is an author index, a subject index, and a table of contents. The format is excellent: there is a generous supply of illustrations and photographs; appropriate mathematical analyses enhance the text and make for a most commendable book.

* * *


The reviewer, who often writes on biophysical topics, is a professor at the State University of New York at Buffalo.

Low frequency circuits

TRANSISTOR PHYSICS AND CIR-CUITS. (2nd ed.) By Marlin P. Ristenblatt, Robert L. Riddle. 549 pp. Prentice-Hall, Englewood Cliffs, N. J., 1966. \$14.00

by H. J. Hagger

The two parts forming the content of the book did not give the reviewer the impression of a well balanced "source of transistor circuit theory for circuit designers and technicians." The first part, on physics-even if it requires less than 20% of the book-is to some extent on a level too low for the reader of such a book and simultaneously also far away from the subject. It seems strange that Newtonian physics and its application to the solar system are essential just for explaining atomic structure. The sections on semiconductors follow the well known lines found in every book on transistor applications. Very briefly transistor and diode types are described. In the second part, on circuits, one section is devoted to a review of the basic principles of circuits and networks, forming an excellent basic training in circuit analysis on the basis of Kirchhoff's laws. In the section on the transistor as a circuit element equivalent circuits and the hparameter approach are discussed. These basic principles are then extensively used in the next chapter on small-signal (low-frequency) amplifiers. It covers all the essential circuit parameters and circuit arrangements. A number of numerical examples are given. Power amplifiers are treated more on a descriptive basis than on exact circuit analysis. Problems on cascaded amplifier stages both for low and high frequencies are discussed in the next chapter. A good approach is

ANOTHER STEP FORWARD IN PATTERN RECOGNITION

Project engineer Les Pownall checks out the optical input channel of a new pattern recognition computer designed and nearing completion at Cornell Aeronautical Laboratory. Soon this computer will hasten solutions to problems which range from automatic target recognition to the reading of alpha-numeric characters.

The Laboratory has been building its analytical and experimental pattern recognition capabilities for nearly a decade. From the first perceptron concept through several research programs in automatic photo sorting, information processing systems for command and control, and automatic classification of radar returns, CAL has pioneered in extending the art of recognizing temporal and spatial patterns.

These efforts in the computer sciences as well as similar areas of research at CAL demand highly advanced facilities and equipments. The most advanced are created by our own people and developed with our own funds. The new pattern recognition computer, along with an associated device — a high resolution flying spot scanner for scanning and digitizing patterns — came into being by just such means.

The CAL technical staff enjoys a broad technical program of independent research — over \$20 million annually — in a welcome environment of modern equipment and techniques. In addition to the computer sciences, the Laboratory is at the forefront of such fields as flight research, avionics, aerospace vehicle research, low-speed aerodynamics, hypersonics, applied physics, operations research, applied mechanics, transportation and systems research.

If your experience qualifies you to join this community of science, mail the coupon for an interesting briefing on this unique research team. Positions are available in both Buffalo and Washington.

CORNELL AERONAUTICAL LABORATORY, INC.

OF CORNELL UNIVERSITY

	RNELL AERONAUTICAL LABORATORY, INC. ffalo, New York 14221
	Please send me a copy of your factual, illustrated prospectus, "A Community of Science," and an application blank.
	I'm not interested in investigating job opportunities now, but I would like to se your latest "Report on Research at CAL."
	me
Nai	
	eet