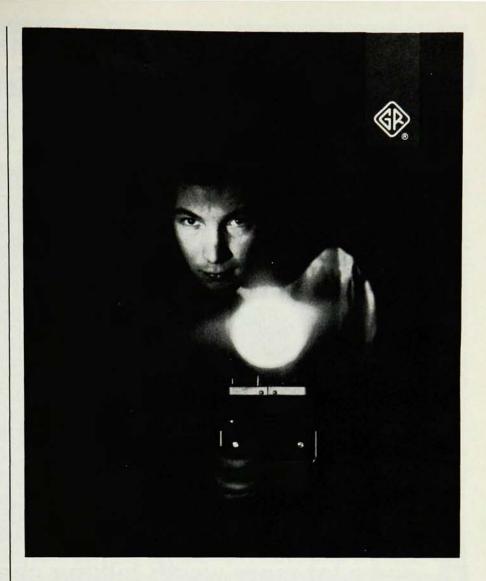
that could restore this objectivity, at least in part, would certainly act for the good of scientific progress. I am quite convinced that if either of Coffman's suggestions should be adopted as a general editorial policy in our journals, the net effect could only be positive.

I should like to offer one further suggestion, which is also based on the recognition that reviewers and authors are indeed human. To further enhance objectivity in the reviewing process, I would suggest that although the reviewer should be an expert in the subject matter of the considered manuscript, he should not be one who is working directly on the same problem or on very closely allied research. If the editor of a journal is unaware of a referee's close connection with a particular problem, then upon receipt of the manuscript, the referee should disqualify himself-just as a juror is required to do so in a court of law when there might be personal reasons that could prejudice his decision.

Mendel Sachs State University of New York at Buffalo

ERRATA: Thank you for the way my talk on "Bad Luck" was presented in the January issue. Unfortunately I myself made a few errors in the references, and since those are of some importance in a paper of somewhat historical nature, I hope you will publish a correction:

On page 77, column 1, line 7, read "the expected effect^{4a}."


On page 77, column 1, line 14, read "sunlight^{4b}."

Change the references to read as follows:

- 4a. C. J. Gorter, Leiden Comm. 247a, Physica 3, 995 (1936).
- 4b. C. J. Gorter, Physica 1, 199 (1934).
- C. J. Gorter, Arch. Teyler 7, 378 (1933); C. J. Gorter, H. B. G. Casimir, Physica 1, 306 (1934); Phys. Z. 35, 963 (1934).
- A. D. Fokker, C. J. Gorter, Z. Phys. 77, 166 (1932).

C. J. Gorter

Kamerlingh Onnes Laboratorium

See all...know all

with a Strobotac® electronic stroboscope

With the aid of a Strobotac you can measure projectile velocity . . . determine the acceleration of a freely falling object . . . measure the speed of light . . . perform color experiments ... prove Kepler's second law . . . study liquid droplets . . . observe standing waves in vibrating rods . . . measure phase relationships between two rotating shafts . . . study visual perception . . . measure torque and speed . . . observe cavitation and turbulence ... stimulate photosensitive materials ... observe ripple-tank phenomena . . . study photoelastic stress patterns . . . perform linear-air-tract experiments . . . study bodies in collision . . . investigate simple harmonic motion . . . take high-speed or Schlieren photographs ... etc ... etc ... etc.

These and many other experiments are described in an informative fact file on stroboscopy. Write for yours today.

GENERAL RADIO W. Concord, Massachusetts 01781