eyes, and perhaps mine are naïve. We must, however, be aware that there is a substantial fraction of the human race that will almost automatically show prejudice against anyone who is different. Race, creed, and color are not the only criteria. One sees prejudice against the poor, the rich, the members of certain clubs and the nonmembers; against physicists by engineers and against engineers by physicists and against both by the so called "nontechnical" people; against drinkers by teetotallers and vice versa. There is prejudice by the young against the old and by the old against the young.

There is no end to the list. Employees often consider their employers as oppressors, and employers have been known to regard their employees as cattle. One must, therefore, suggest that race and religion are not the causes of prejudice, but merely convenient handles on which to hang hate by those who are so predisposed. It is the predisposition to prejudice that we need to eradicate, and very little seems to be known about this particular type of neurosis. A Chicagoan says that everyone living west of the Rocky Mountains is stupid; a resident of New Jersey alleges that all residents of Virginia are bigoted devotees of slavery. Some Californians think that all residents of Alabama and Mississippi are subhuman. My wife was once criticized by neighbors for not watching daytime television, and I have been treated coldly for such diverse characteristics as not playing bridge, having an engineering degree, reading detective stories, being fat, writing letters to editors and not being a member of the bar.

Again, the disease is the predisposition to prejudice, not its manifestation against a particular object. For those so disposed can *always* find an object. We should study the disease, rather than the symptoms.

Lawrence Fleming Pasadena, California

#### Reviewers and anonymity

In a recent letter (PHYSICS TODAY, November, page 12) Moody L. Coffman suggested that objectivity would be

enhanced in the reviewing of submitted manuscripts if either the author's name would be concealed from the reviewer or the reviewer's name would be revealed to the author. In response to this letter, Samuel A. Goudsmit commented (January, page 12) that Coffman's suggestion about concealment of the author's name was excellent but that "unfortunately, it is impossible." (Goudsmit did not comment on the second possibility of revealing the reviewer's name to the author.)

I assume that Goudsmit's comment refers to the impossibility of enhancing objectivity by following Coffman's first suggestion because of the impossibility of concealing an author's name from the reviewer. If it would, indeed, not be possible to conceal the author's name in all cases, then certainly nothing would be gained by attempting to do so (neither would anything be lost!). However, I find it very hard to believe that this assertion is true. Of course the reviewer could guess the identity of an author with some degree of certainty in those cases when the subject of a manuscript is a part of a series of research papers on a program that is uniquely the author's-that is, where very few (or no) others have joined in with his program of research. On the other hand, from glancing over the literature for the past ten years or so, it is clear that such cases occur only a (disappointingly!) small fraction of the time. We are living in an age of "bandwagon physics." When, for example, 80 people are all doing active research in the study of the representation of internal symmetry groups to describe elementary particles, I would have serious doubts about any reviewer's ability to pinpoint, with certainty, the identity of the unnamed author. In many instances the reviewer might have a strong feeling about the possible identity of the author; yet, so long as he is not certain, the objectivity of his review is bound to be enhanced, as contended by Coffman.

Along with any advantages of the "bandwagon" approach to physics research, a definite accompanying ill, which is hard to ignore, is the strangulating effect on science that is induced by some loss of objectivity. Anything

### **EMI**

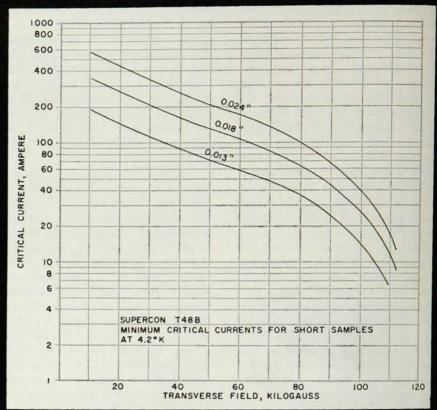
## $\lambda = 1,650-8,500+A$ ENI=2x10<sup>-13</sup>lm.



The 9558Q Photomultiplier eliminates

... the nuisance of multiple detectors! One EMI photomultiplier type 9558Q covers UV, visible and infra red. The 9558Q is a two inch diameter end window tube with eleven venetian blind dynodes having highly stable CsSb secondary emitting surfaces. The Spectrasil window gives better transmission of UV than natural quartz. The photocathode is the S-20 (tri-alkali) type employing unique EMI geometry. The results are high quantum efficiency (23-25% at peak) and exceedingly low dark current, (typically .002uA. at 200 A/L). Where the exact wavelength is unknown, or the entire spectrum is under investigation, the 9558Q enables the work to proceed without changing detectors.

Where the red sensitivity of the tri-alkali photocathode is most important, and the UV region is not, the 9558B, with a pyrex window (but all the other desirable characteristics of the 9558Q) may be substituted at much lower cost. Tubes can be specially selected for difficult astronomical tasks, laser range finders, red channels of flying spot scanners, etc.


Write for details on S-20 tubes in a complete range of sizes.

GENCOM DIVISION

80 Express St., Plainview, L.I., N.Y. 516-433-5900 TWX 516-433-8790 \*EMI ELECTRONICS, LTD.

# THIS IS IT... SUPERCON T48B

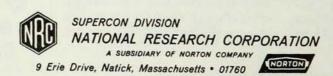
- METALLURGICALLY BONDED COPPER JACKET
- HIGH GUARANTEED CURRENT CAPACITY
- CRITICAL FIELD ABOVE 120 KILOGAUSS
- HIGH CONDUCTIVITY COPPER
- EXCELLENT MECHANICAL STRENGTH
- CONVENIENT FLEXIBILITY
- STABILIZED CABLES
- INSULATED WIRES



New Supercon T48B is an excellent superconductor for fields up to 100 kilogauss.

It provides a combination of high current, stable performance, physical ruggedness and strength not previously achieved.

Supercon T48B is an improved version of the well-proven Supercon T48 (niobium 48% titanium) alloy introduced by the Supercon Division in 1965. While having an elemental composition very similar to Supercon T48, the new material carries higher short sample currents at all field levels.


Simultaneously, stability has been improved through the metallurgical application of a jacket of pure copper integrally bonded to the superconductive core. The high electrical and thermal conductivity and the excellent bonding of this jacket combine to produce the improved performance of the new material.

Supercon T48B provides the same 122 kilogauss critical field, 10.5°K critical temperature, high tensile strength, ruggedness, and flexibility of Supercon T48. Like all Supercon wire, T48B can be wound and rewound and can be cycled time and again between cryogenic and room temperature levels without damage or deterioration.

Supercon T48B wire is available in three standard sizes having diameters of .013", .018" and .024" (.33mm, .46mm and .61mm) including the copper jacket. The wire can be supplied insulated with a tough coating of Formvar\* polyvinyl formal resin noted for its dielectric strength. It can also be supplied stranded by itself or with copper wire into a variety of cable configurations wholly or partially stabilized to provide pre-determined current capacities of hundreds or thousands of amperes.

If you would like to have a copy of the Supercon T48B specification sheet, or if you would like information about any of the other Supercon products, please write or call.

<sup>\*</sup>Trademark of Shawinigan Resins Corporation



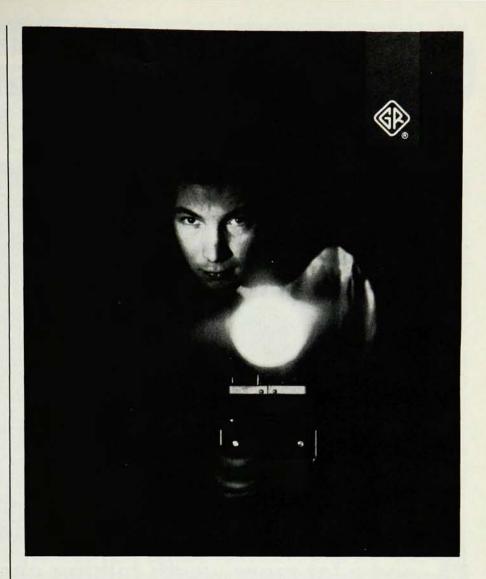
that could restore this objectivity, at least in part, would certainly act for the good of scientific progress. I am quite convinced that if either of Coffman's suggestions should be adopted as a general editorial policy in our journals, the net effect could only be positive.

I should like to offer one further suggestion, which is also based on the recognition that reviewers and authors are indeed human. To further enhance objectivity in the reviewing process, I would suggest that although the reviewer should be an expert in the subject matter of the considered manuscript, he should not be one who is working directly on the same problem or on very closely allied research. If the editor of a journal is unaware of a referee's close connection with a particular problem, then upon receipt of the manuscript, the referee should disqualify himself-just as a juror is required to do so in a court of law when there might be personal reasons that could prejudice his decision.

Mendel Sachs State University of New York at Buffalo

ERRATA: Thank you for the way my talk on "Bad Luck" was presented in the January issue. Unfortunately I myself made a few errors in the references, and since those are of some importance in a paper of somewhat historical nature, I hope you will publish a correction:

On page 77, column 1, line 7, read "the expected effect<sup>4a</sup>."


On page 77, column 1, line 14, read "sunlight<sup>4b</sup>."

Change the references to read as follows:

- 4a. C. J. Gorter, Leiden Comm. 247a, Physica 3, 995 (1936).
- 4b. C. J. Gorter, Physica 1, 199 (1934).
- C. J. Gorter, Arch. Teyler 7, 378 (1933); C. J. Gorter, H. B. G. Casimir, Physica 1, 306 (1934); Phys. Z. 35, 963 (1934).
- A. D. Fokker, C. J. Gorter, Z. Phys. 77, 166 (1932).

C. J. Gorter

Kamerlingh Onnes Laboratorium



#### See all...know all

with a Strobotac® electronic stroboscope

With the aid of a Strobotac you can measure projectile velocity . . . determine the acceleration of a freely falling object . . . measure the speed of light . . . perform color experiments ... prove Kepler's second law . . . study liquid droplets . . . observe standing waves in vibrating rods . . . measure phase relationships between two rotating shafts . . . study visual perception . . . measure torque and speed . . . observe cavitation and turbulence ... stimulate photosensitive materials ... observe ripple-tank phenomena . . . study photoelastic stress patterns . . . perform linear-air-tract experiments . . . study bodies in collision . . . investigate simple harmonic motion . . . take high-speed or Schlieren photographs ... etc ... etc ... etc.

These and many other experiments are described in an informative fact file on stroboscopy. Write for yours today.



GENERAL RADIO W. Concord, Massachusetts 01781