of well logging in oil prospecting, it is not surprising to find a rather elaborate treatment of waves along cylindrical bore holes. The story here is indeed a rather old one, but the author brings it down to work done within the past five years and includes a reference to his own important contributions to this field.

The final three chapters deal with sources of elastic waves in solids, seismic model experiments and small-scale field experiments. Though most of the treatment is theoretical there is a good deal of reference to experimental methods and results. The charts and diagrams are clear, well produced and unambiguous. The bibliography, though by no means exhaustive, is fully adequate to guide the reader to the important original sources. There is a collection of illustrative problems that help to make the volume useful as a text in an advanced course.

This well written book covering relatively new developments in an important domain of science should attract considerable attention among earth scientists.

Solving is learning

PROBLEMES DE MECANIQUE GEN-ERALE. By Henri Cabannes. 436 pp. Dunod, Paris, 1966. Paper 38 F.

by R. Bruce Lindsay

It is generally admitted that understanding of the principles of mechanics is best exemplified by the ability to solve special problems that illustrate those principles. Hence practically all textbooks in mechanics, at any rate in English speaking countries, are liberally supplied with problems, and courses based on such books lay great stress on the solution of these exercises. The volume under review handles the situation in different fashion. The author, who is a well known applied mathematician and professor in the University of Paris, published in 1962 a general text on theoretical mechanics (Cours de Mécanique Générale, Dunod, Paris, 1962) that contains no problems for solution by the reader. The present book remedies the deficiency by being devoted to problems illustrative of the earlier text.

The book is divided into three parts.

Reviewed in this Issue

- 73 SCHOPPER: Weak Interactions and Nuclear Beta Decay
- 73 Bronowski: The Identity of Man
- 74 WHITE: Seismic Waves: Radiation Transmission and Attenuation
- 75 CABANNES: Problèmes de Mecanique Générale
- 75 Shillov, Gurevich: Integral Measure and Derivative: A Unified Approach
- 77 McGraw-Hill Yearbook of Science and Technology
- 77 CLARK, ed: Handbook of Physical Constants
- 78 Morrish: The Physical Principles of Magnetism
- 78 Adler, Smith, Longini: Introduction to Semiconductor Physics
- 78 Gray, DeWitt, Boothroyd, Gibbons: Physical Electronics and Circuit Models of Transistors
- 79 Manny, Goldstein, Grover: Semiconductor Surfaces
- 80 BECHMANN, HEARMON: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology
- 81 Monop-Herzen: Luminescence: L'Electron et la Lumière, Matière et Photoluminescence

The first consists of 180 "exercises," which the author categorizes as rather They are classified in nine groups, according to the chapters in the author's mechanics text to which they refer. These problems cover such topics as kinematics, principles of mechanics, kinetics, particle mechanics and solid mechanics. They are accompanied by complete solutions. In the second part there are 40 somewhat more difficult problems taken mainly from university examination papers. These also have detailed so-The book closes with 15 lutions. problems without solutions.

Though many of the problems are of standard character and not particularly original, the average reader will find them most useful in connection with a careful study of the author's book on mechanics. The emphasis is on the mathematical rather than the physical side, and one misses the concern for more or less practical physical situations that characterizes most British and American mechanics texts. Thus there is practically no treatment of energy and its applications.

The style is graceful and clear and the typography and figures excellent. It does not appear, however, that the book will enjoy great use in the United States.

R. Bruce Lindsay, Hazard Professor of Physics at Brown University, is now on leave and working in London.

A basic theory of real variables

INTEGRAL, MEASURE AND DERIVATIVE: A UNIFIED APPROACH. By G. E. Shilov, B. L. Gurevich. Trans. from Russian by R. A. Silverman. 233 pp. Prentice-Hall, Englewood Cliffs, New Jersey, 1966. \$11.35

by J. Gillis

It used to be the custom to begin by teaching Lebesgue measure of unidimensional sets and then move on to two or three dimensions. Subsequent extension of a large part of the theory to space of infinite dimensionality was possible, but required justification. The frequent result was to leave many mathematicians and more physicists in a fog. Some physicists in particular have been prone to blunder out of this fog by relying on geometrical intuition, handwaving, and murmuring something about Hilbert space. Really this great name deserved better!

It is almost half a century, however, since Daniell formulated a theory of measure general enough to cover everything required. And the concepts implicit in the Daniell approach made possible the development of the Wiener integral and, more recently, the Feynman integral. These lines of thought have by now come to dominate our ideas of measure and integration in physical applications. As for mathematics, there must be many respectable universities now with their distinguished elderly mathematicians