New Foundations
for Quantum Physics

Attempts to understand better the basic principles of quantum physies
continue. Because of the epistemological problems involved, the proc-
ess is often controversial. The present article attempts to derive quan-
tum mechanics from simple nonquantal postulates.

i
i
by Alfred Landé
SIXTY-SEVEN YEARS AGO Max Planck in-  much of what is really behind the
itiated the quantum age, but its con- strange rules of calculation and par-
ceptual content still mystifies the stu-  adoxical quantum antinomies. After
? dent. And the efforts to explain the  studying those axioms and being im-
; basic mathematical rules of the theory ~ bued with the usual ways of interpre-
by developing them from certain  tation, the student will practice the
, fundamental principles (wave-particle  formalism merely as “the tricks of the
g duality and complementarity) beg the  trade,” the more so as he is told that
question since those rules and prin-  he ought to “understand that there is
ciples themselves are of a quantum  nothing to be understood in quantum
’ character. For this reason several  mechanics,” and that “the real prob-
theorists have gone one step further lem was to refine the language of
in their analysis and have established  physics, rather than vainly trying to
t a system of axioms that do not in- reduce one aspect [waves] to another
clude any quantum rule explicitly.  [particles].”
However the axioms—I refer to the In contrast to being satisfied with
v 14 theses of Fritz Bopp in the Heisen-
I berg festschrift and those of Giinther
Ludwig in his Grundlagen der Quan- Alfred Landé,
tenmechanik—are of a highly abstract emeritus professt_)r
4 mathematical kind and will hardly gf physics “t.m".‘]‘
tate University, is
satisfy the physicist's desire for an ex- eI e
planation of the bewildering quantum work in lammic
i theory. structure and quan-
As much as T admire those mathe- E‘L‘E‘;];;’Cm};‘ ]itEr]:;
& matically unassailable axiomatic sys- factor “g” iéI:-lamed
F . tems, I do not think that they reveal for him.
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nonunderstanding, I think that a de-
duction of the theory from nonquantal
postulates is desirable. I hold, how-
ever, that to be explanatory the non-
quantal postulates ought to be of a
simple, plausible, almost self-evident
kind—without giving an exact defini-
tion of these terms. At the same time,
combination of the basic postulates
ought to yield the well known nonrela-
tivistic quantum formalism. The fol-
lowing new approach does not claim
to be without blemish or to be com-
plete. Yet it has brought, not only to
me, the experience: “Now 1 begin to
understand quantum mechanics.” At
any rate, the aim is to demystify a
theory that for too long has had the
reputation of incomprehensibility, go-
ing as far as the assertion that it in-
volves a revision of ordinary (Aris-
totelian) logic.

Probability matrices

The discussion to follow starts
by abandoning classical deterministic
theory in favor of a statistical or
probabilistic schema of a very general
kind, later to be applied to mechanics,
Thus, before dealing with energy, mo-
mentum and other physical quantities,
I speak only of various “observables”
A, B, C and so forth. The quantity A
for a given mechanical system, may be
capable of various values A;, A,. . . .
Whether these values form a contin-
uous band or are discrete and then are
denoted as characteristic or eigenval-
ues is irrelevant so far. For the sake
of mathematical simplicity we assume
at first that the multiplicitics M = m
and M = n in the series

Ay, As,.. . An, and By, Bs,. . B, etc.
(1)

are finite pending later generalization.
On the other hand, there may be an
infinite number of observables A, B,
C, etc. of a most diverse nature.
Suppose now that an instrument
built for determining A values, called
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an “A meter,” has ascertained the sys-
tem to be in one of the states A_.
When the system is now subjected to a
B-meter test, sometimes the value B;,
another time B., etc.,, will turn up
without possibility of individual pre-
diction. The statistical proposition
contains the assumption, however,
that there is order such that the vari-
ous states By, B,, . . .B, occur with
certain statistical frequencies or prob-
abilities

P(4, = B), P(4. — By), ...
P(d,— B,) (2)

the sum of which is unity. One may
compile a rectangular array, a matrix,
of all probabilities P connecting var-
ious original A states with subsequent
B states revealed by a B meter

P(4,—+ B,) P(4,— Bj)...
P(As— B,) P(A;—Bj)... | = Pus
(3)
with m rows and n columns. Each

row sums to unity. All this is almost
self-evident as soon as one accepts a
statistically ~ described schema of
events ascertained by the application
of “meters.”

The symmetry postulate

Far from self-evident is the assump-
tion: there is a two-way symmetry of
the individual probabilities

P(4,— Bg) = P(Bg—~ 4,) (4)

This postulate looks plausible enough
as being the statistical counterpart of
the time reversibility of classical deter-
ministic processes.

From equation 4 it follows that the
columns of the matrix P,, above are
identical with the rows of the matrix
Py, which, as rows, sum to wunity.
Therefore not only the rows but also
the columns of P,p sum to unity,
And since the sum of all P’s of the ma-
trix is the sum m of all rows and also
the sum n of all columns, m must

equal n, so that the matrix P45 must
be quadratic, with the observable A
having the same multiplicity m of val-
ues as the observable B and any other
observable C and D and so forth in the
same mechanical system. Omitting
the arrows from now on and writing
P, for short

-
~ Laf

8
Z Py =1
B

1 for every «

Il

for every 8 (5)

Notice the special case describing re-
producibility of a test result (without
which no objective physics would be
possible)

Pyt = baarorPaa =1  (6)

rendering (P44) a unit matrix (ones
in the diagonal and zeros outside the
diagonal).

From now on we denote as observa-
bles only such quantities A and B, etc.,
as fit into the schema above. Thus,
position xyz is not an observable, but
position xyz at time t, is an observa-
ble A, and xyz at time t is another ob-
servable B although one can hardly
observe the position of a particle
inside an atom at any time f. The
term “observable” is a misnomer, but
established terminology cannot easily
be changed.

Probability interference

The law of probability interference
was originally found as a special fea-
ture of quantum mechanics, as a sup-
plement to the Schrodinger equation,
resting on a wave analogy. 1 intend
to show that P interference is a
natural consequence of the general
probabilistic schema developed so far
when the following postulate is added:
The various P tables (stochastic ma-
trices) form a group connected by a
single general operation, symmetric
with respect to all observables A, B, C.

The emphasis here is first on the
word “general.” One can always con-
struct, using his mathematical ingenu-
ity, a group of P matrices of a special
kind, for example, a set in which every
matrix repeats the same elements in
every row and column apart from
zeros or has other high symmetries.
Such solutions are unfit a priori to
represent the various probabilities
connecting pairs of observables of the
most diverse sort. Yet despite the di-
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versity of the individual P tables, their
mutual interdependence is postulated
to be symmetric with respect to ex-
changes among A, B, C. . . . These
exchanges are presented by a single
repeatedly applied generating opera-
tor v

Pas Y Ppe = Puac (7)

where = indicates single valued
and —> multivalued determination un-
der the operation v.

The requirement of generality in-
volves exclusion of special solutions
resting on mathematical intuition.
Straightforwardness rather than arti-
ficiality is hard to define exactly, but
it is vital in the construction of a credi-
ble physical theory. It is not a quan-
tal restriction.

In the search for an operator v sat-
isfying generality and symmetry, re-
striction to multivalued determination
(=) is too vague to start with (it cer-
tainly would call for special ingenu-
ity!). Let us therefore consider first
single valued determination (=),
applying it, however, to quantities
named ¢y which might later either be
identified with, or at least be related
to, the quantities P. The desired op-
eration

Yap Y lpe = e (8)

eliminates the “intermediate” B, which
thus can be replaced by any other
quantity D or E ete. Equation 8 satis-
fies the first condition necessary for
the y quantities to form a group,
namely associativity, just because it
contracts AB and BC to AC.

The second condition for the quan-
tities to comprise a group is that they
include an identity member e such
that ev l[{.{B = 'l.u'j__B ve= ‘-L'.{B' Ife
= 0 then v symbolizes addition +.
If e = 1 then ¥ symbolizes multiplica-
tion X. Since the matrices P include
identity members Py, = Pyp =
... = 1, only the alternative

Yaa=tpp=... =1 9)

can serve as a model for matrices
equal or related to the matrices P.
The procedure v must therefore be
symbolic multiplication

Yuz X lee = Yac (10)

Likewise, we see that

Yac X '{fr;'ﬂ = un (10"
and fga X a5 = Vo
follow from equation 10.  However,
the only consistent symbolic multipli-
cation of matrices is the usual one of
rows times columns, with equation 10
reading explicitly

? Vag¥py = VYay (11)

(Again, with mathematical ingenuity
one might find other kinds of symbolic
multiplication that might work for spe-
cial kinds of ) matrices that satisfy
the group and symmetry conditions. )

The third condition for elements to
form a group requires that each mem-
ber have an inverse. This condition is
satisfied; the inverse of W ;5 being
¥, since equation 10 together with
equation 9 yields

Yap X Ypa =1 (12)

or written out
z ‘&ﬂ'ﬁﬁ"ﬂu" = g’a’a” = an'ﬂ" (12,}
B

In conclusion: The product the-
orem, equation 10, with the special
case of equation 12 is the only way
(within the framework of a theory ex-
cluding special and artificial construc-
tions) of connecting quadratic ma-
trices ¢ including 14, = 1 by a single-
valued interdependence procedure
with group properties symmetric in
ABG.,..

The quantities  cannot be identi-
cal with the P’s since the latter are all
positive whereas there must also be
negative, or possibly complex, y’s to
yield zero in the sum of products of
equation 12’ when o = o”. And
since the y theorem is the only single-
valued one satisfying the conditions
above, the interdependence between
the Ps can not be single-valued.
However, their connection can be re-
lated to the single-valued one among
the y's as seen from the table. The
table suggests one simple and general
solution of the multivalued P-inter-
dependence problem, namely putting

(13)

Pog = VoV = Ppa

Hence either y¢,, = ¢, or more

generally, when admitting that the
y's might be complex (° indicating the
complex conjugate)

Vap = ¥ (14)

Again Equation 13 is not the only
mathematically possible solution of the
P-matrix interdependence problem.
But it is the only one at which one ar-
rives in a simple straightforward way
without appealing to mathematical
intuition. It is the “natural” solution
under the (perhaps somewhat meta-
physical) assumption that the basic
laws of physical nature are simple, and
that complications are always a sign
that one has not yet arrived at a fun-
damental level.

The reason that “Nature avails it-
self” of unitary transformations with
complex quantities , rather than be-
ing satisfied with orthogonal transfor-
mations of real y’s, will be seen in the
next section.®

(Hermiticity)

Mean and transition values

Probabilities are needed for the calcu-
lation of mean values. For example,
the mean value of B over its eigen-
values B, when starting from the orig-
inal state A_ is defined as

(B) = ZP,Bs (15)
8

° The September 1966 issue of PHYSICS TO-
DAY contains a critical review of my book New
Foundations of Quantum Mechanics, a review
intended to criticize my derivation of quantum
mechanics from nonguantal postulates, because
the interpretation had been dealt with by other
critics before. However, with one exception, the
review again concentrates on points of interpreta-
tion, general views about randomness, causality,
plausibility of analogies, thought experiments
(filters) and imperfections of language. Since
these are primarily matters of taste, I do not see
much value in arguing about them, the less so as
they do not affect the main line of derivation.

The only exception is the critique of the argu-
ment concerning uniqueness of unitary trans-
formations as solving the P-interdependence prob-
lems. I must confess that I, too, have regarded
this part of the book as the weakest link in the
chain of derivation. Therefore I am glad to
offer in the present article a decisive improve-
ment by using group concepts. (This develop-
ment was first presented at the International
Colloquium on Logic, Physical Reality and His-
tory, presided over by Allan Breck and Wolfgang
Yourgrau, in Denver, May 1966.)

On the other hand, the reviewer’s objection to
the book version by way of a counter example
(of a very special kind with P matrices consist-
ing mostly of zeros and repetition of the same
elements in all rows and columns) was justified
because I did not emphasize enough the require-
ment of generality and physical appropriateness.
These requirements seem to be implicit in_the
very sophisticated mathematical axioms of F.
Bopp in the Heisenberg Festschrift (Vieweg,
1961). However, whether time is regarded as
an observable or not is irrelevant for the close
relation and analogous derivation of the two rules
p = h/x and E = h/r for systems with space
and time periods A and 7.

However, the critical review is welcome be-
cause it encourages improvements and may
induce a mathematician to formulate the restric-
tions of “simplicity” and “‘exclusion of special
unphysical counterexamples™ more precisely.
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Because of equation 13 the same
quantity can be written

Boa = 2 YiapBylpa (15%)

8

We rename it “the mean value of B
starting from A and returning to A_
again:” or more concisely “the transi-
tion value of B from A to A *»
There is nothing new in this expression
save the way of writing and the verbal
description. However, within the
framework of orthogonal or unitary
transformations there is but one way
of generalizing equation 15/, namely

Ba'y = ‘E‘paﬁBﬂu"ﬁ‘r (]6)

which defines the “transition value of
B from A, to C.." According to ordi-
nary ideas, one would replace the
quantities ¢ in equation 16 with
quantities P. But only equation 16
has equations 15 and 15’ as special
cases conforming to the general for-
malism of unitary transformations. If
one defines the “matrix element”

(17

then one can write equation 16 with
a double sum

Bggr = Bgbgg

B, = ZZ YapgBasary (17%)
BB’

When the y's are real, B, = BW. In

the more general case of complex

y’s, the B’s like the y's are Hermitian,

as seen from equation 16.
By = B*., (177

Wave function and selection rules

So far the discussion has been only
about observables A, B, C, . . . in gen-
eral. Turning now to mechanics we
have to do with special quantities g—
position, p—momentum, E—energy,
and ¢t—time, forming pairs of “conju-
gates.” In classical mechanics conju-
gacy is defined from the Hamiltonian
equations of motion. But this defini-
tion of p and ¢ as conjugates suffers
from having to assume some chosen
function H(p,q) as representing the
energy E conjugate to the time t. In
quantum mechanics conjugacy of p
and g is defined in terms of a relation
between p and g themselves in three
equivalent ways: by the Born com-
mutation rule pg — gp = h/2i, by
the Schrodinger operator rule, p —
(2i7)d /29, and by the wave function
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w(p.g) = exp (2ir pq/h). All three
introduce the action constant h associ-
ated with i = v/—1. The quantum for-
malism was finally established, 26
vears after Planck’s E = hy by the in-
ductive genius of Max Born, Werner
Heisenberg, Paul A. M. Dirac and
Erwin Schrédinger. Today it is ac-
cepted because it works.

I propose here that it is a necessary
consequence of combining the previous
nonquantal assumptions (the two-way
symmetry of the P’s and the postulate
that the P-matrices form a group) with
the nonquantal postulate of Galilean
invariance in the following probabilis-
tic version: The mean value of any
function F(q) calculated for transitions
from a state p to p’

Fyr = S¥(p.q) Flg) ¥(g:p")dg (18)

(replacing the summation of equation
16 by integration since q has contin-
uous eigenvalues) shall depend on the
difference p—p’ only. And similarly,
the transition value G, of any func-
tion G(p) shall depend on g—q' only.
The same is true for the pair of conju-
gate variables E and t. The proof
that these nonquantal postulates lead
to the quantum theory runs as follows:

If the transition values of matrix ele-
ments F,,, are to depend on p—p’ for
any function F(q), one can take for F
the special case of a delta function
D(q) = 8(q—q’') where g’ is any
chosen, fixed g value. In this case
equation 1 reduces to the simple prod-
uct

Dypr = Y(pg"WAq"p") (19)

The right-hand side cannot depend on
p—p’ for any real function y(p.q) =
y(q,p). Rather ¢(p,q) must be com-
plex so that the second factor in equa-
tion 19 satisfies y(q'p’) = ¢°(p.q")
and y must have the complex ex-
ponential form

¥(pg) = a(g) exp [ip alg)] (20)

(where a(q) is real) since this is the
only function rendering the product
in equation 19 dependent on p—p/'.
Similarly, dependence on g—¢q' of the

transition value G, of any function
G(p) requires

Y(p.g) = b(p) exp [ig B(p)] (20)

where (p) is real). Comparison of
equation 20 with equation 20" now
leads to a(q) = b(p) = const., a(q)
= cq and B(p) = cp (where the con-
stant c¢ is real) finally yielding y(p,q)
— const X exp (ipge) or writing
2+/h for ¢

¥(p,g) = const X exp (2ir pg/h)  (21)

where h is an “action constant” of the
dimension pg. In a corresponding
fashion one obtains from requiring
Galilean invariance for E and ¢

Y(E,t) = const X exp (2ir Et/k) (22)

The expressions in equations 21 and
29 are wavelike functions of wave-
length A = h/p and of frequency v
= E/h, representing “probability am-
plitude functions” rather than “real”
waves, The y functions in equations
21 and 22 have as their implications
the Born commutation rule, the opera-
tor rule for p and E, the Schrodinger
equation, the selection rules, and the
uncertainty relation, in other words the
main body of nonrelativistic quantum
mechanics.? There is no room here to
show that on nonquantal grounds y
functions of observables pertaining
to two or more identical particles can
only be symmetric or antisymmetrie.
Since the argument presented here
has been purely deductive throughout,
one could, with considerable hindsight,
imagine a theorist in his study be-
ginning to draw up a probabilistic
schema, then adding the two-way
symmetry postulate and assuming a
general interdependence law connect-
ing the P matrices, and introducing
Galilean invariance for the mechanical
quantities p and ¢, as well as E and ¢.
In this way he could arrive at the for-
malism of quantum mechanics with-
out appealing to any experiment, or
to the principles of duality or comple-
mentarity. a]
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