LETTERS

Stanford's stand on Themis

In the interview with Chalmers W. Sherwin, which appeared in the September issue of PHYSICS TODAY, there are some serious misstatements. Possibly they are misquotations, but they should be corrected.

In particular, in a discussion of the Themis program, there is mention of "beautiful general-relativity-gyroscopeprecession experiments conducted at Stanford." Themis does not support this work. This important experiment was first proposed by Leonard I. Schiff in 1960 in the course of his theoreticalphysics research supported by the Air Force Office of Scientific Research. The experiment was then undertaken by William M. Fairbank, with support initially from AFOSR, and then from NASA and from the Air Force, Wright Field. This support is provided jointly with programs in the aeronautics and astronautics department. Thus pure physics and engineering are financed together, and in this respect only there is a resemblance to Themis.

However the Themis program is specifically designed so that universities like Stanford, which have already demonstrated excellence in research, are not eligible. It was originally intended that Themis would not interfere with project research chosen for its scientific or engineering importance. In fact, Themis is being expanded at a time when the overall research budgets are stationary or being reduced. Implementation of Themis in this way is bringing about a drastic reduction of university research programs and an almost complete stop to new directions in fundamental research.

Meanwhile, fortunately, some fundamental research projects such as the superconducting orbiting gyroscope are continuing. To accomplish the experiment on general relativity Stanford physicists must make, and are making, really major advances in technology. A precision of 0.01 sec of arc per year is expected. This sort of precision certainly would be useful in long space journeys or in satellites placed for long periods on station. Incidental technological achievements permit maintaining other cryogenic devices for long periods in space. Methods for producing and measuring extremely small magnetic fields are also greatly advanced. In turn, the possibility of zero-field regions prompted Stanford physicists to begin research on freeprecession helium 3 gyros that may give a precise gyro usable on earth.

Who else needs such precision and is willing to go to so much trouble for it? Probably nobody else now. But what becomes possible will eventually be practical, and from a basic-research program will arise a whole new realm of technology. Themis will do well if it can match it.

ARTHUR L. SCHAWLOW Stanford University

Free or mission research?

The interview with Chalmers Sherwin contains statements that greatly disturb me. I realize that statements in such an interview cannot be elaborated, and that if they were so qualified with detailed explanations and examples they might convey an impression opposite to that which one first experiences. My comments on this interview pertain to my first impression and hence are subject to change through better understanding.

The following statements particularly disturbed me: (1) "... the real strategy for research should be one of coupling long-range scientific work to short-range practical results . . ." (2) "Hindsight showed a broad lack of coupling between basic and applied research during the previous 20 years, which the country will no longer per-(3) "If you want research funds, couple your request to an understandable need and justify the relevant long-range work by short-range practical results." (4) "In the future we must do only those experiments that are crucial to theoretical issues. Some scientists seem to want to do research only if it is useless."

If the above criteria had been applied by each investigator to determine whether he should start or continue his own research project, our greatest advances in understanding and mastering nature would still be in the hands of fate. How could a man like Paul Herget, who in the mid-thirties had a passion for calculating the orbits of asteroids and minor planets, justify his work on any of the above grounds?

Ge(Li) beans

SOMETHING TO CHEW ON.

The ambiguous parameter

Efficiency. For your experiment, what does it mean?

Compare two Ge(Li) detectors at 1.33 MeV. Some 2.5 cm³ detectors have an efficiency of about 0.7%, based on parallel flux. Some 20 cm³ detectors have 2.8% efficiency, again based on parallel flux. But if your experiment has a short source-to-detector distance, the direction of the flux is anything but parallel.

Now take a cold look at your projected counting rate. The counting rate you will obtain is a function of the solid angle. When the source is close by, a large active area detector will give a higher counting rate than a long skinny detector of the same volume.

It comes down to this. Efficiency for a given area detector depends upon the depth in the direction of the incoming gamma-ray flux. The counting rate depends not only upon this depth, but also upon the active area which is in the path of the gamma-ray flux.

Princeton Gamma-Tech now guarantees an unambiguous set of efficiency standards. For each Ge(Li) detector, we supply the full energy peak counting rate for Co⁶⁰ (1.33 MeV) at a given source-to-detector distance. We'll also advise you on the optimum detector configuration—considering both efficiency and counting rate—for your experiment.

For details on this and other topics, please write or call. And send for a copy of our GUIDE TO THE USE OF Ge(Li) DETECTORS.

PRINCETON GAMMA-TECH

Box 641, Princeton, New Jersey, U.S.A. (609) 924-7310. Cable PRINGAMTEC.