LETTERS

Let's not pay referees

The letter by Richard J. Weiss in the August issue of PHYSICS TODAY presents a totally erroneous concept of the role of the referee for society journals. Refereeing is done by the whole community of physicists. Our American Physical Society uses about 1500 different referees in a year; every author is a potential referee. Refereeing is a professional responsibility performed voluntarily by all who wish to keep the publication standards high. If it were changed into a paid consulting job most of our prominent referees would not be interested, and we would be left with a handful of mercenaries. Moreover a charge for referee services will not act as a deterrent but will merely discriminate against small institutions.

Weiss also asserts that any paper quoted less than a dozen times should have remained unpublished. This statement is in direct contradiction with results obtained by the Technical Information Program, directed by M. M. Kessler at the Massachusetts Institute of Technology. In a report of a thorough investigation based on all the footnotes in 36 volumes of *The Physical Review*, Kessler and F. E. Heart print the following emphatic warning:

"CAUTION. Any attempt to equate frequency of citation with worth or excellence will end in disaster; nor can we say that low frequency of citation indicates lack of worth."

S. A. Goudsmit Brookhaven National Laboratory

Free thought, paid referees

The letter by Richard J. Weiss PHYSICS TODAY, August 1967), suggesting salaried referees and a \$500 publication fee, can probably be implemented if and only if *The Physical Review* is divided in two parts, one charging \$500 (and paying referees) and the other free (and not paying the referees).

That way, the free expression of scientific thought would continue unhindered, while valuable time need not be lost on cheap articles.

Eventually, one section might be discontinued, in a way that would indicate which is better.

On that basis, in all probability, the main writers of cheap articles would read only the expensive ones, while writers of expensive articles would feel a greater responsibility to read the cheap ones.

In any case, the procedure would indicate which projects have the financial backing, without providing an excuse to neglect publication by saying it is too expensive.

Kenneth J. Epstein Chicago

For want of the fee . . .

After reading Richard Weiss's letter in the August Physics Today I dusted off my crystal ball and looked to see what The Physical Review would be in a few years. Here are my findings:

From: Editor Richard J. Weiss, The Physical Review

To: A. Onestone Dear Dr Onestone:

We recently received your communication on electromagnetic theory. Unfortunately since your sponsoring agency, the patent office, can not make a deposit of \$500.00, your work must go unpublished. We hope that you understand that only through very careful reviewing will it be possible to uphold the quality of our journal. In the past few years we have received far more papers than ever before, no doubt due to the recent advances in theory and the refinement in experimental technique.

Our editorial policy has certainly paid off. The Physical Review now is published once monthly and has an average length of 12 pages. We admit to some drawbacks. Last year all of our articles did not merit Nobel prizes. This year, during the bad summer months, we will probably have to print some reruns from a few

Ge(Li) beans

SOMETHING TO CHEW ON.

The DUODE™ spectrometer: new, versatile, anti-Compton

Princeton Gamma-Tech recently introduced a revolutionary new kind of Ge(Li) spectrometer, the DUODE, TM which greatly reduces the Compton continuum. Compton edges are totally eliminated.

The DUODETM spectrometer contains a pair of Ge(Li) detectors mounted in tandem. This new device may be operated in any one of three different modes, each to optimize a particular parameter of importance to the experimenter.

Optimumpeak-height-to-background ratio (anti-Compton mode) - By use of coincidence circuitry, a gammaray which interacts by multiple processes in separate portions of the DUODETM has its total deposited energy recorded. A gamma-ray which interacts by a single process, losing energy in one portion of the DUODETM [e.g., only one Compton event), is not recorded. Thus, Compton edges disappear and the continuum becomes low and featureless. When searching for a weak-intensity peak, especially where a Compton edge would appear, this coincidence mode should be employed.

Optimum efficiency — For highest counting rate, connect the two components of the DUODETM spectrometer in parallel, omitting the coincidence circuitry. In this way you take advantage of the full depth of this large-volume Ge(Li) spectrometer.

Optimum resolution — For highest resolution, especially at low energies, use only the front half of the DUODETM to take advantage of the low capacitance of this single detector.

And if you have a computer, you can record all data at once. For more information about this surprisingly inexpensive new anti-Compton device, write or call.

PRINCETON GAMMA-TECH

Box 641, Princeton, New Jersey, U.S.A. (609) 924-7310. Cable PRINGAMTEC.