
Arthur H. Snell, assistant director of Oak Ridge.

The electron-cyclotron heated target plasmas have been under development at Oak Ridge for some time. In the simple mirror configurations used earlier a surrounding gas pressure of 10^{-5} torr was required to provide a continuous supply of cold electrons for gross stability. Snell expects that a magnetic-well configuration will yield gross stability of the target plasma without the cold electrons. Then the pressure can be reduced to 10^{-6} torr or lower, low enough for hot-ion build-up (due to high trapping efficiency) to interesting densities.

IMP will use a magnetic-well configuration, which incidentally will also suppress the negative-mass instability. It will be smaller than DCX-1 (and its successor, DCX-2) in physical size but larger in terms of Larmor orbits. It will use superconducting coils in a flexible mirror-quadrupole arrangement. (Copper windings would require 23 MW of dc power.) Some parameters for IMP are given in the table.

In a parallel experiment at Oak Ridge (INTEREM), which uses a simple mirror configuration so that ambient pressure must be relatively high, 0.1 amperes of 20-keV $\rm H^0$ particles are injected into a microwave plasma produced in a 2.5-kG magnetic field. Experimenters have found a hot-ion density of $3 \times 10^8 \rm \ cm^{-3}$ with no indication of ion cyclotron radiation signalizing the instabilities previously encountered.

OAK RIDGE IMP experiment now being designed will inject neutral atoms into a target plasma produced by microwave heating.

Getting a Charge Out Of a Solar Power System

A solar power system capable of converting sunlight into all the electricity needed to operate a large manned orbiting space station for a year or more can be built with existing technology and equipment, RCA Astro-Electronics scientists announced at the Inter-Society Energy Conversion Engineering Conference in Miami, Fla. Functioning as part of a space station in a 200-nautical-mile orbit, the system would generate 5 to 8 kW of usable power.

During daylight, the system would produce 8 kW for the station's onboard systems while simultaneously charging the batteries so that 5 kW would be available when the earth obstructed the sunlight. To make this possible, the solar array would have a capability of 15.5 kW.

The most distinguishing feature of the system proposed in this NASA-sponsored study would be four paddles each 5.2 by 8.5 meters. Blanketed by solar cells that convert sunlight into electricity, the panels would be arranged in an H configuration around the manned space station. The system could be assembled, tested and ready for operation by the early part of the next decade.

... also of Interest: Albany, Michigan State, Germanium

The State University of New York, Albany expects to install a 4-MeV Dynamitron in the academic year 1968-69 that will produce intense beams of positive ions for the study of low-yield neutron and proton capture reactions. The research program, directed by Jagadish Garg, will include nucleon polarization studies and high-resolution neutron and gamma spectroscopy ... Michigan State University will soon have a TRIGA Mark 1 reactor that will operate at 250 thermal kW . . . I. C. McGroddy and M.I. Nathan of IBM find that bulk germanium in a high electric field can modulate a direct current with high-frequency oscillations in the gigahertz range.

Parameters for Oak Ridge IMP

Steady state magnetic field Longitudinal mirror ratio Radial mirror ratio Maximum field Mirror coils

Effective plasma volume

Microwave power

Neutral beams

2:1 1.3:1

70 kG, near quadrupole coil

15-cm diameter throats, coils spaced about 30 cm apart, conductor to conductor

1.5 liters

20 kG at center

2 kW at 55 GHz (5.5 mm) cw, from specially developed traveling-wave amplifiers

One or two, estimated 0.2 A each of H^o at 20 keV, with 50% energy spread built in