Lunar landing

and exploration

Bellcomm needs space scientists with a wide understanding of the many disciplines they must work with—geology, geophysics, selenology, exobiology, meteorology, mathematics, nuclear physics, computing and programming, and chemical, mechanical, electrical and propulsion engineering...creative, imaginative people who understand the interface of problems that are not exclusively theirs.

The broad objectives of lunar missions are to conduct observations of the moon, provide for scientific experiments and tests on the lunar surface, conduct experiments on the space environment, evaluate and extend man's capabilities to operate in space as astronaut and scientist, and qualify systems and crews for long-duration space missions.

Bellcomm studies these problems and more as the systems engineering contractor for NASA.

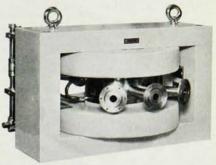
If you would like to explore the moon with us, send your résumé in confidence to Mr. N. W. Smusyn, Personnel Director, Bellcomm, Inc., Room 1521-J, 1100 17th St., N.W., Washington, D.C. 20036.

Bellcomm is an equal opportunity employer.

LETTERS

more optimistic view.1,2 If the 152 neutron subshell arises from a gap between the N = 152 and N = 154neutron levels, the effects would be expected to disappear between N =156 and 160. Thus a leveling out of the lifetimes would result beyond N =156 and the SF half-life systematics would be expected to behave in a manner analogous to those for alpha decay-except the level gap would influence SF decay rates more dramatically. The predictions of these calculations1,2 agree well with the results for 260104 but not for the Ghiorso and Sikkeland value for 252102 (which could be due to an isomeric state decaying by spontaneous fission). The solution to this problem is a subject of considerable debate at present, and hopefully current heavy-element research efforts will clarify it within the next year.

References


- S. A. E. Johansson, Nucl. Phys. 22, 529 (1961).
- V. E. Viola, Jr, B. D. Wilkins, Nucl. Phys. 82, 65 (1966).

VIC VIOLA University of Maryland

Federal agencies and the Draft

Mr. Huffman of US Steel (PHYSICS TODAY, Aug., p. 9) makes a good point. Neither prominent scientists nor scientific societies have strongly opposed the ending of occupational and graduate student deferments. But it is not only the scientist and the association who "have an obligation to the American people to inform them of the vital importance of maintaining a strong scientific community . . . ," who have failed to make it clear "... to the general public that the best way for a scientist to serve his country is by doing good science." A great deal of responsibility lies with the federal agencies such as NIH and NSF, which have failed to support publicly the needs of the scientific community whenever those needs have conflicted with the single-minded purposes of the Selective Service system. In fact the civilian federal agencies make it a policy never to intercede with Selec-

A New Line of Multiport Switching Magnets

Featuring

- High Field Uniformity
- High Quality Magnetic Materials
- Field Homogenizing Filters
- Contoured Pole Edges
- Water Cooled Coils
- Protected Vacuum Chambers

These and many other features are provided in Alpha's new line of Multiport Switching Magnets, designed to be used as a precise research tool in conjunction with both low and high energy particle accelerators.

Mass energy products up to 275 at $\pm 45^{\circ}$ are provided in standard units, and higher mass energy products are available in designs to meet exact customer specifications.

Alpha will perform a complete design service for Beam Transport Systems, given only the input conditions and the required characteristics at the output.

Contact your local engineering representative.

Send for free brochure.	
TitleOrganization	-
Address	

460 Roland Way, Oakland, Calif. 94621 Phone (415) 635-2700

The integrated circuit PDP-8/I is a brand new computer, but behind it are the two most successful small computers ever built. Over 1,000 PDP-8 systems are already installed — an all time high for real-time, on-line small general purpose machines. Nearly 1,000 PDP-8/S computers are installed — all sold and delivered within the last 15 months. Built into instrumentation. On-line in process control.

So, PDP-8/I starts with a history and goes on from there. It has all the features of the PDP-8 plus a new ease of interfacing, expanded software and new options. It is more compact. PDP-8/I has a faster multiply-divide option (multiply 6.0, divide 6.5 microseconds). Its standard 1.5 microsecond 4K core memory expands to 32K (first extra 4K plugs into the basic configuration without further interfacing). PDP-8/I comes as a stand-alone console or mounted in a standard 19-inch rack. The processor is prewired so that it will accommodate a high-speed paper tape reader and punch, a 100 card-per-minute reader.

an incremental plotter, and a scope display also without further interface.

And software. The same proven software that runs the PDP-8, drives the PDP-8/I. Auto-indexing. MACRO. FORTRAN. On-line editing and debugging. But that is not all. New systems software is available which takes full advantage of 32K or more of DECdisk or DECtape memory. Thousands of the most active computer users in the world exchange PDP-8 programs and techniques.

Peripherals that go with the PDP-8 and PDP-8/S go with the PDP-8/I. Hundreds of logic-compatible modules make interfacing easy. Peripherals are field-installed by an applications engineering and field service group second to none.

And the crusher. PDP-8/I sells for \$12,800 complete. Quantity discounts reduce that price. Deliveries in the spring. PDP-8 and PDP-8/S available now. Write for brochure. We'll throw in our new Small Computer Handbook free.

How to put your talents to the test:

Come to IBM in Lexington, Kentucky. There's plenty of opportunity to do state-of-the-art development work with one of IBM's fastest growing divisions.

PHYSICISTS: Advance your career with R&D work in solid state technology, including photo devices, semiconductors, and optics B.S., M.S., or Ph.D.

ELECTRICAL ENGINEERS: Circuit design, logic and system design, solid state technology (including photo devices). 0-10 years' experience and B.S., M.S., or Ph.D.

MECHANICAL ENGINEER: B.S. or M.S. in mechanical engineering to do state-of-art work in development engineering. You'll design, build and analyze mechanical or electro-mechanical systems. And you'll most probably follow through on your designs all the way into production.

TEST EQUIPMENT ENGINEER: Design special test equipment—then supervise its construction. You'll use solid state logic and analog circuitry. Required: B.S. or M.S. in E.E., 0-5 years' experience.

METALLURGISTS: Work in diverse technologies including sintered metals, materials application, ferrous and nonferrous alloys, service failure analysis. B.S. or M.S. and strong background in physical metallurgy required.

At Lexington your family can live in Kentucky's beautiful bluegrass country. And there's a full range of company paid benefits, including tuition refund.

If you want to do challenging work, write:

Mr. Terry Mobley IBM Corporation Dept. UG2-L New Circle Road Lexington Kentucky 40507

IBM

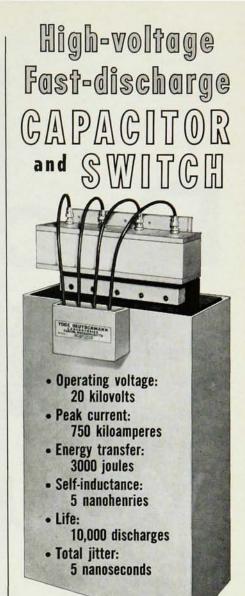
An Equal Opportunity Employer

LETTERS

tive Service on behalf of an employee or grantee. The official report of the Public Health Service to the President's Commission on the draft not only elevated Selective Service needs above the long-run needs of American science and civilization, but also did so on the basis of unscientific extrapolations from the conclusions of a small number of old, poorly designed, and largely irrelevant studies.

M. G. Saslow University of Washington

How many postdoctorals?


I read with interest and no little astonishment the note under RESONANCES on page 71 of the September Physics Today, having to do with the number of postdoctorals in physics in US institutions. Since I was the source of the data mentioned in the statement, I would like to correct the conclusion drawn.

We have received returns from 11 000 postdoctorals working either in this country or as US citizens abroad. Of these 9 786 have been analyzed at this writing. Of those analyzed 13.6% or 1332 are physicists. Almost exactly one-half of the postdoctorals are foreign citizens, and of the Americans only 446 are "immediate" postdoctorals, that is, within one year of their Furthermore if we take the average postdoctoral appointment to be two years, only 233 physics PhD's go immediately into postdoctoral work. Since this is only 21.3% of the 1 046 PhD's produced in the United States last year, it is certainly an exaggeration to suggest that most US PhD's enter postdoctoral training.

RICHARD B. CURTIS National Research Council

Erratum

The book review appearing in the September issue, page 93, under the title "History of Kinetics," is for the book Kinetic Theory, Vol. 2: Irreversible Processes (Pergamon Press, 1966, cloth \$4.95, paper \$3.95). The book title was mistakenly printed as Kinetic Theory, Vol. 1: The Nature of Gases and of Heat.

The Tobe Model SBG-5 Switch is a multi-channel enclosed spark-gap switch supplied with its own high-voltage trigger. The user must provide only a 250-volt positive pulse and a trigger-charge input of 5 kv which may be taken from the storage-capacitor charging supply through a dropping resistor.

Model SBG-5 switch and trigger shown as mounted on Tobe Model ESC-248A Capacitor

The switch is designed to mate, as pictured, with a TOBE 5-nanohenry, 3000-joule, 20-kv capacitor or to any 10-inch-wide parallel-plate transmission line. Common trigger circuitry is available to facilitate banking.

Detailed information about dimensions, acceptance tests, and mountings is given in Bulletin EB365-60 available, on request.

 And write or call whenever you have a requirement for energy-storage capacitors, discharge switches, pulse-forming networks, or low-impedance pulse lines.

