years ago. We are also exploring further reductions in the number of articles printed to upgrade our prestige percentage.

Perhaps in the future, should your sponsoring agency prove more wealthy, you can resubmit your communication. We are sure that the extensive review performed by a large organization would assure acceptance of your work. Should it pass such a critical editing, it would be sufficiently diluted, no doubt, to contain nothing revolutionary or offensive to anyone.

With regrets we are, Yours truly, EDITORIAL BOARD

FRED L. WILSON Houston, Texas

Indian institutes-who gains?

Everett Hafner, in his sensitive account of a summer physics institute in North Bengal (PHYSICS TODAY, June, page 44), raises a fundamental question. With so many Indians settling into the US academe, which culture is being served by AID's efforts in India?

If we concentrate our efforts on educating India's gifted sons to an awareness of sociological problems, perhaps Hafner's problems of communicating with the Indians will dissolve. The summer institutes will be run by those best qualified: western-trained Indians who feel the need to invest an occasional six weeks in the terribly needy country they are so well equipped to serve.

HERBERT F. HELBIG Clarkson College of Technology

Naming the new elements

The article "The Search for Element 102" (PHYSICS TODAY, Sept., page 25) presents a welcome clarification of the many problems that have beset the characterization of this enigmatic element. In addition Ghiorso and Sikkeland have given a valuable description of the multitude of experimental difficulties associated with detection of the heaviest nuclides—ranging from

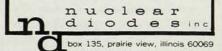
the need for increasingly sophisticated electronic and mechanical systems to the tedious details of the isotopic purity of target materials.

The controversial history of element 102 and the increasing complexity of such experiments suggest that perhaps the procedures for naming new elements should be revised. At present the Commission on Atomic Weights of the IUPAC accepts the name suggested by the initial discoverer. This has introduced a considerable amount of international politics into the heavy element programs and has contributed to a tendency to emphasize direct discovery of a new element, on occasion at the expense of the nuclear physics involved in the studies.

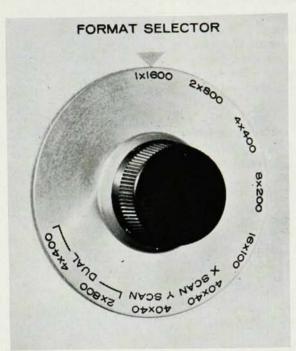
The properties of element 102 now seem well established. However, the next such dispute is already in sight, as is noted in Ghiorso's and Sikkeland's questioning of the identification of ²⁶⁰104 by the Russian group. I would like to suggest that the TUPAC consider the following steps to lessen the confusion stemming from such conflicting experimental findings. (1) The first of these should not be difficult, that is, acceptance of a name for future elements should be postponed until the initial results have been verified independently by a second group. (2) The second is less practical, but worth considering. The suggestion is that the TUPAC Commission assign names to new elements prior to discovery. The elements up to Z = 114 can, in principal, be produced even if lifetimes and quantities are below current detection levels. The present trend is to name new elements after outstanding scientists. While to date this prerogative has been used with discretion, it would be hoped that a more universal criterion might be found for selecting scientists to be so honored.

A second point I would like to mention regards the implication of the authors that spontaneous fission (SF) half lives decrease linearly with neutron number after N=152, as indicated in their Fig. 4. From the point of view of further heavy-element production, the existence of such a trend would strongly preclude the observation of many additional heavy nuclides. However there is another interpretation of the irregularities in nuclear properties at N=152 that gives a

Co® photopeaks (0.3 kev/ch)


BUYING A GERMANIUM DETECTOR?

BUY THE BEST


Nuclear Diodes offers the best Germanium detector value available.

- Best photopeak efficiency per cc of volume.
- · Best Energy Resolution.
- · Best Peak to Compton Ratio.

You should buy a detector by value and not volume alone. The above Cos spectrum taken with one of our 20 cc coaxial Ge (Li) detectors and a room temperature FET preamplifier shows the spectacular peak/ compton ratio and resolution we achieve. If you're planning to buy a Germanium detector be sure to check with us for the best specifications and prices available for large volume detectors. Write us for details on our complete line of Ge (Li) detectors, cryostats, cooled FET preamplifiers, surface barrier and position sensitive silicon detectors, or phone us at 312-634-3870.

What separates our 1600-channel pulse-height analyzer from other analyzers with only 1024 channels?

A 576 additional channels, \$00,000.00 extra cost, and a lot more worth talking about.

Perhaps you're ready right now to make the move to a multichannel analyzer with 1024 channels. Why not make such a move really worthwhile? Consider how much more our 1600-channel analyzer system offers—for the same price as a 1024-channel analyzer.

First of all, 576 more channels mean superior resolution for solid-state detector work. Further, you can use as many as 16 different detectors with this 1600-channel analyzer system.

Or add a second ADC, and you can easily use the system for multiparameter analysis. And as our illustration shows, the dual-mode format permits operation of our analyzer as two separate 800-channel analyzers.

There's more: extensive data manipulation capabilities; versatile data dis-

play; and compatibility with a wide range of readout devices, including magnetic tape for rapid-transfer of data to and from the analyzer memory.

Our 1600-channel analyzer systems enjoy an enviable reliability record and are, of course, backed by our nationwide network of field-service offices.

This adaptable, advanced, performance-proved 1600-channel analyzer system is worth talking about at length. Get in touch with your local Nuclear-Chicago sales engineer. His telephone number is listed here:

Albuquerque: 505 268-2478 Atlanta: 404 231-5866 Boston: 617 894-7733 Chicago: 312 827-6136

Cincinnati: 513 931-9100 Cleveland: 216 333-4355 Dallas: 214 631-2363 Denver: 303 825-3255 Detroit:
 313 271-0712
Durham:
 919 286-3227
Houston:
 713 524-7461
Kansas City:
 913 362-6442
Los Angeles:
 213 626-3236
Minneapolis-St. Paul:
 612 646-1744
New York:
 212 828-3900
Oak Ridge:
 615 482-3153
Philadelphia:
 215 627-1669
Pittsburgh:
 412 343-4141

Rochester: 716 244.4454 St. Louis: 314 997-0977 San Francisco: 415 321-0782 Seattle: 206 632-5313 Washington: 301 588-2862 Edmonton: 403 433-8262 Montreal: 514 481-8159

Toronto: 416 481-4467 Amsterdam: 162666

NUCLEAR-CHICAGO CORPORATION

A SUBSIDIARY OF G. D. SEARLE & CO.

373 East Howard Avenue, Des Plaines, Illinois 60018, U.S.A. / Donker Curtiusstraat 7, Amsterdam W, The Netherlands

Scientists and engineers interested in challenging career opportunities are invited to contact our personnel director.

Lunar landing

and exploration

Bellcomm needs space scientists with a wide understanding of the many disciplines they must work with—geology, geophysics, selenology, exobiology, meteorology, mathematics, nuclear physics, computing and programming, and chemical, mechanical, electrical and propulsion engineering...creative, imaginative people who understand the interface of problems that are not exclusively theirs.

The broad objectives of lunar missions are to conduct observations of the moon, provide for scientific experiments and tests on the lunar surface, conduct experiments on the space environment, evaluate and extend man's capabilities to operate in space as astronaut and scientist, and qualify systems and crews for long-duration space missions.

Bellcomm studies these problems and more as the systems engineering contractor for NASA.

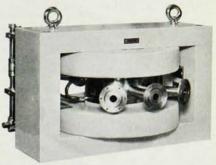
If you would like to explore the moon with us, send your résumé in confidence to Mr. N. W. Smusyn, Personnel Director, Bellcomm, Inc., Room 1521-J, 1100 17th St., N.W., Washington, D.C. 20036.

Bellcomm is an equal opportunity employer.

LETTERS

more optimistic view.1,2 If the 152 neutron subshell arises from a gap between the N = 152 and N = 154neutron levels, the effects would be expected to disappear between N =156 and 160. Thus a leveling out of the lifetimes would result beyond N =156 and the SF half-life systematics would be expected to behave in a manner analogous to those for alpha decay-except the level gap would influence SF decay rates more dramatically. The predictions of these calculations1,2 agree well with the results for 260104 but not for the Ghiorso and Sikkeland value for 252102 (which could be due to an isomeric state decaying by spontaneous fission). The solution to this problem is a subject of considerable debate at present, and hopefully current heavy-element research efforts will clarify it within the next year.

References


- S. A. E. Johansson, Nucl. Phys. 22, 529 (1961).
- V. E. Viola, Jr, B. D. Wilkins, Nucl. Phys. 82, 65 (1966).

VIC VIOLA University of Maryland

Federal agencies and the Draft

Mr. Huffman of US Steel (PHYSICS TODAY, Aug., p. 9) makes a good point. Neither prominent scientists nor scientific societies have strongly opposed the ending of occupational and graduate student deferments. But it is not only the scientist and the association who "have an obligation to the American people to inform them of the vital importance of maintaining a strong scientific community . . . ," who have failed to make it clear "... to the general public that the best way for a scientist to serve his country is by doing good science." A great deal of responsibility lies with the federal agencies such as NIH and NSF, which have failed to support publicly the needs of the scientific community whenever those needs have conflicted with the single-minded purposes of the Selective Service system. In fact the civilian federal agencies make it a policy never to intercede with Selec-

A New Line of Multiport Switching Magnets

Featuring

- High Field Uniformity
- High Quality Magnetic Materials
- Field Homogenizing Filters
- Contoured Pole Edges
- Water Cooled Coils
- Protected Vacuum Chambers

These and many other features are provided in Alpha's new line of Multiport Switching Magnets, designed to be used as a precise research tool in conjunction with both low and high energy particle accelerators.

Mass energy products up to 275 at $\pm 45^{\circ}$ are provided in standard units, and higher mass energy products are available in designs to meet exact customer specifications.

Alpha will perform a complete design service for Beam Transport Systems, given only the input conditions and the required characteristics at the output.

Contact your local engineering representative.

Send for free brochure.	
TitleOrganization	-
Address	

460 Roland Way, Oakland, Calif. 94621 Phone (415) 635-2700